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ABSTRACT
We numerically study the strong-interaction limit of the exchange–correlation functional for neutral atoms and Bohr atoms as the number of
electrons increases. Using a compact representation, we analyze the second-order gradient expansion, comparing it with the one for exchange
(weak interaction limit). The two gradient expansions, at strong and weak interaction, turn out to be very similar in magnitude but with
opposite signs. We find that the point-charge plus continuum model is surprisingly accurate for the gradient expansion coefficient at strong
coupling, while generalized gradient approximations, such as Perdew–Burke–Ernzerhof (PBE) and PBEsol, severely underestimate it. We
then use our results to analyze the Lieb–Oxford bound from the point of view of slowly varying densities, clarifying some aspects on the
bound at a fixed number of electrons.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0174592

I. INTRODUCTION

Exact properties (or constraints) of the exchange–correlation
(XC) functional of Kohn–Sham (KS) density functional theory
(DFT) play a central role in the construction of practical approx-
imations (see, e.g., Refs. 1–8). Many of them have been derived
and incorporated into useful approximations by Perdew and his co-
workers. In particular, the slowly-varying limit,9–12 already invoked
in the seminal paper of Kohn and Sham,13 and the subsequent
generalized gradient approximations (GGAs) made KS DFT the
workhorse for computational chemistry and solid-state physics.8
The crucial role played by Perdew in this success cannot be
overstated.1,6

While successful GGAs for solids6 typically recover the
exact9–12 second-order gradient expansion coefficient for exchange,
chemical systems are better described with GGAs with a coefficient
almost twice as large in magnitude.1,14 This empirical observation
was later rationalized by connecting the gradient expansion with the
large-Z limit of neutral atoms, where Z is the nuclear charge.5,15 The

argument partially relied on an assumption on the large-Z depen-
dence of exchange beyond the local density approximation (LDA),
which was only very recently corrected.16,17

The exchange functional is the weakly interacting (or high-
density) limit of the exact XC functional. The opposite limit, strongly
interacting (SIL) or low density,18–20 provides complementary infor-
mation and can be used to build approximations in different ways
(for a recent review, see Ref. 20). The main aim of this work is
to study the SIL functional for large-Z atoms, computing accurate
numerical results and providing an analysis similar to the one done
for exchange.15,17 To fully take into account the recent corrections on
the large-Z behavior,16,17 we analyze our results through the compact
representation introduced in previous work on the strong-coupling
limit of the Møller–Plesset adiabatic connection.16 We also perform
this kind of compact analysis on exchange, which reveals a somewhat
surprising symmetry between the two limits: the resulting gradient
expansions are very similar in magnitude but with opposite signs.
As we shall see, our numerical study on neutral atoms and Bohr
atoms also suggests a weak dependence on density profiles of this
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gradient expansion of both limits, in agreement with Ref. 17. We
also compare our accurate results with different approximations.

We then turn to another important exact constraint for the XC
functional: the Lieb–Oxford (LO) inequality,21–24 which has been
turned into a useful tool for constraining approximations, again, by
Perdew.24,25

In previous works,26–28 the SIL functional has been used to
establish lower bounds for the optimal constant appearing in the
LO inequality at given electrons number N.26–28 A question that
remained open in this context was why some density profiles give
much tighter bounds than others. We will answer to this question
by using the present results, and we will also investigate the rela-
tion with the functional appearing in the strong-coupling limit of
the Möller–Plesset adiabatic connection.16,29,30

Hartree atomic units are used throughout.

II. THEORETICAL BACKGROUND
For a given N-electron density ρ(r), the Levy31–Lieb32 uni-

versal functional for general interaction strength λ is defined
as

Fλ[ρ] = min
Ψ↦ρ
⟨Ψ∣T̂ + λ V̂ee∣Ψ⟩, (1)

where T̂ is the kinetic energy operator for the N electrons, V̂ee is their
mutual Coulomb repulsion, and the minimization is performed over
all many-electron wavefunctions with the prescribed density ρ(r).
The XC functional that needs to be approximated in any practical
KS DFT calculation is

Exc[ρ] = F1[ρ] − F0[ρ] −U[ρ], (2)

where U[ρ] is the Hartree (mean field) functional,

U[ρ] =
1
2 ∫

dr∫ dr′
ρ(r)ρ(r′)
∣r − r′∣

. (3)

A. The functionals E x[ρ] and W∞[ρ]
For the exact XC functional, applying uniform coordinate

scaling by defining ργ(r) = γ
3ρ(γr),

∫ dr ργ(r) = N (for all γ > 0), (4)

is equivalent33,34 to scale the strength of the electron–electron
interaction, λ = 1/γ. The high (λ→ 0) and low (λ→∞) density
limits (weakly and strongly interacting limits, respectively) of the
functional Exc[ρ] are known to be

lim
λ→0
(λ Exc[ρ1/λ]) =W0[ρ] ≡ Ex[ρ],

lim
λ→∞
(λ Exc[ρ1/λ]) =W∞[ρ].

(5)

The high density ( 1
λ →∞) limit W0[ρ] = Ex[ρ] is also called the

DFT exchange energy. Note that both functionals satisfy

Ex[ργ] = γEx[ρ], W∞[ργ] = γW∞[ρ]. (6)

If we look at the spin-polarization dependence, considering the
spin-densities ρ

↑
(r) and ρ

↓
(r), with ρ = ρ

↑
+ ρ
↓
, we have35–37

Ex[ρ↑, ρ↓] =
1
2

Ex[2ρ↑] +
1
2

Ex[2ρ↓], (7)

W∞[ρ↑, ρ↓] =W∞[ρ]. (8)

The spin-independence of the functional W∞[ρ] is due to the fact
that as λ→∞, electrons are strictly correlated, forming a floating
crystal in a metric dictated by the density ρ(r), with spin effects
appearing at orders ∼ e−

√

λ.18,19,38

In the rest of this paper, we will consider closed-shell systems
only, with ρ

↑
= ρ
↓
= ρ/2. Our results for both functionals can be

extended to cases with ρ
↑
≠ ρ
↓

via Eqs. (7) and (8).

B. Gradient expansion of E x[ρ] and W∞[ρ]
Central to many approximate XC functionals is the slowly vary-

ing limit in terms of gradients of the density. The scaling relations of
Eq. (6) imply that if a gradient expansion approximation (GEA) for
the two functionals W i[ρ] (i = 0 or∞) of Eq. (5) exists, its first two
leading terms must be expressed using the integrals

I0[ρ] = ∫ dr ρ(r)4/3, (9)

I2[ρ] = ∫ dr
∣∇ρ(r)∣2

ρ(r)4/3 (10)

and must have the form

Wi[ρ] =

WLDA
i [ρ]

³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ai ⋅ I0[ρ] + Bi ⋅ I2[ρ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

WGEA2
i [ρ]

+ ⋅ ⋅ ⋅ ,

= Ai ∫ dr ρ(r)4/3
(1 +

Bi

Ai
⋅ x([ρ], r)2

) + ⋅ ⋅ ⋅ . (11)

In the second line, we have introduced the reduced gradient

x([ρ], r) =
∣∇ρ(r)∣
ρ(r)4/3 , (12)

which essentially gives the relative change of the density on the scale
of the average interparticle distance. In the DFT literature, the equiv-
alent reduced gradient s([ρ], r) = 1

2(3π
2
)
−1/3x([ρ], r) is often used

as it more accurately describes the relevant length scale for exchange
when perturbing an infinite system of uniform density.

For the case of exchange (i = 0), in Ref. 39, it was shown that if
a gradient expansion exists, it is an asymptotic series: earlier cutoffs
in the series are needed as the strength of the potential perturb-
ing the constant density increases. For the strong interaction limit
(i =∞), even less is known on the existence of a gradient expansion.
However, on a purely practical side, GEA36 and GGA40 functionals
have been shown, by using available SIL results on atoms, to accu-
rately approximate the first two leading order terms of the strong
interaction limit. These gradient expansions have even been used in
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TABLE I. Coefficients Ai and Bi appearing in Eq. (11). The value of A∞ is given by the bcc Wigner crystal energy, which is
floating to recover the uniform density.45 Values for the point-charge plus continuum (PC) model36 and for the PBE,1 PBEsol,6

and B8814 functionals are also shown. The value BARCB
x has been extracted very recently from an accurate study of large-Z

neutral and Bohr atoms.17

W i[ρ] Ai Bi

Ex[ρ]

Ax = −
3
4(

3
π )

1/3
≈ −0.738 56 BGEA

x = − 5
216 π (3π2

)
1/3 ≈ −0.0024

BPBE
x = −0.0042

BB88
x = −0.0053

BARCB
x = − 1

16 π (3π2
)

1/3 ≈ −0.0064

W∞[ρ]

A∞ = −1.444 230 75 BGEA
∞ =?

APC
∞ = −

9
10(

4π
3 )

1/3
≈ −1.4508 BPC

∞ =
3

350(
3

4π )
1/3
≈ 0.005 317 3

BPBE
∞ = 1.244 57 ⋅ 10−7

BPBEsol
∞ = 0.000 537 8

interpolation functionals that accurately describe a variety of larger
systems.40–43

The LDA constants Ai are exactly known, while the value of
the coefficients Bi is more subtle. By applying a slowly varying per-
turbation to the uniform electron gas and by carefully handling
the long-range Coulomb tail, a coefficient BGEA

x for the exchange
functional has been derived9–12 (we use equivalently i = 0 or i = x
to denote quantities for the functional W0 = Ex). However, while
GGAs that recover BGEA

x work well for extended systems, for atoms
and molecules, better results are obtained with a value roughly twice
as large in magnitude. In Table I, we report a small overview, with
some values of Bx for GGA exchange functionals widely used in
chemistry.

For W∞[ρ], the value of B∞ is unknown. The point-charge
plus continuum (PC) model36 provides an approximate value for
this coefficient, as well as an approximate value for A∞, which is
slightly different than the exact one. The PC model is constructed
from the physical idea that for slowly varying densities, the electrons
will try to neutralize the small dipole created by the density gradi-
ent. The PC values are also reported in Table I, together with the
B∞ from the Perdew–Burke–Ernzerhof (PBE)1 and the PBEsol6 XC
functionals.

Gaining more information on the coefficient B∞ is one of the
aims of this article. To this purpose, in Sec. III, we will review particle
number scaling5 and the large-Z limit of atoms5,17 as an alternative
way to approach the slowly varying limit for finite systems. Note that
this procedure is different than perturbing the uniform electron gas.
While both procedures are expected to yield the same coefficients
Ai,44 studies on the exchange functional5,17 found that the coefficient
Bi is not the same, which could explain5,15,17 why successful GGAs
for chemistry have Bx ≠ BGEA

x , as exemplified in Table I, where we
also report the value BARCB

x recently extracted from the large-Z limit
of atoms.17

III. GRADIENT EXPANSION FROM
PARTICLE-NUMBER SCALING

The gradient expansion of Eq. (11) is usually invoked for
densities ρ with weak reduced gradient,

x([ρ], r) ≪ 1. (13)

While perturbing a uniform density is one way to create such den-
sities, adding more and more particles in a fixed density profile is
another possibility, as detailed below.

A. Particle-number scaling of a density profile
For a given density profile ρ̄(r), with ∫ dr ρ̄(r) = 1 (and for

a given exponent p), we construct (“particle-number scaling”) a
sequence of densities,

ρ̄N,p(r) = N3p+1 ρ̄(Np r), (14)

with increasing particle number N,

∫ d3rρ̄N,p(r) = N (N = 1, 2, 3, . . .). (15)

These densities have the reduced gradient

x([ρ̄N,p], r) =
x([ρ̄], Npr)

N1/3 . (16)

Consequently, for sufficiently large particle numbers N ≫ 1, they
satisfy condition (13), provided that

max
r∈R3

x([ρ̄], r) is finite. (17)

Exponentially decaying densities (or other kinds of L2 densities) do
not satisfy Eq. (17) in their tails. In these cases, one applies the GEA
in the sense of the right-hand side of the first line of Eq. (11), with
the second term being much smaller than the first one.

Using the densities (14) in Eq. (11), we see that the existence of
a gradient expansion for the functionals Ex[ρ] and W∞[ρ] implies a
well defined large-N expansion,

Wi[ρ̄N,p] = Ai ⋅ I0[ρ̄N,p] + Bi ⋅ I2[ρ̄N,p] + ⋅ ⋅ ⋅

= Ai ⋅ I0[ρ̄] ⋅Np+4/3
+ Bi ⋅ I2[ρ̄] ⋅Np+2/3

+ ⋅ ⋅ ⋅ . (18)
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Provided that the terms indicated by dots are sufficiently small, we
may conclude

Wi[ρ̄N,p] − Ai ⋅ I0[ρ̄] ⋅Np+4/3

I2[ρ̄] ⋅Np+2/3 = Bi + O(N−1/3
),

lim
N→∞

Wi[ρ̄N,p] − Ai ⋅ I0[ρ̄] ⋅Np+4/3

I2[ρ̄] ⋅Np+2/3 = Bi.

(19)

Note that the uniform-coordinate scaling of Eq. (6) implies that all
choices of p are equivalent for studying Ex[ρ] and W∞[ρ] as it holds
that

Wi[ρ̄N,p] = NpWi[ρ̄N,0]. (20)

For functionals that do not satisfy a simple relation under uni-
form coordinate scaling, such as the correlation functional, different
values of p explore different physical regimes, as reviewed in Ref. 46.

B. Densities with asymptotic particle-number scaling
Physical many-electron systems do not arise by filling more

and more particles in a fixed density profile but by adding particles
in an external potential. In order to study the gradient expansion
for physically relevant systems, several authors considered neutral
atoms,5,15,17,47 in which N = Z electrons are bound by a point charge
Z, and so-called Bohr atoms,17,48,49 in which the external potential
is −1/r and the electron–electron interaction is set to zero. These
systems define a sequence of N-electron densities ρSqc

N (r),

∫ dr ρSqc
N (r) = N (N = 1, 2, 3, . . .), (21)

which displays particle-scaling behavior only asymptotically (in the
limit of large N ≫ 1),

ρSqc
N (r) ≈ ρ̄

Sqc
N,p(r) (N ≫ 1) (22)

= N3p+1 ρ̄ Sqc
(Np r), (23)

where ρ̄ Sqc
(r) is an asymptotic density profile, specific for

the sequence ρSqc
N (r), which can be obtained exactly from

Thomas–Fermi (TF) theory.17,47–50

In this case, using the densities ρSqc
N (r) in Eq. (11), we obtain,

for large N,

Wi[ρSqc
N ] = Ai ⋅ I0[ρSqc

N ] + Bi ⋅ I2[ρSqc
N ] + ⋅ ⋅ ⋅ . (24)

Unlike in Eq. (18), however, the N-dependence cannot be extracted
explicitly here. Moreover, even when the integrals I0,2[ρSqc

N ] are finite

for all values of N, the corresponding integrals I0,2[ρ̄ Sqc
] for the

asymptotic profile ρ̄ Sqc
(r) can be divergent, as we shall see below.

1. Neutral atoms
We consider here the densities of neutral atoms (writing “na”

for “Sqc”), ρSqc
N (r) = ρna

N (r). In this case, we have asymptotically, as
N gets larger and larger,47,50,51

ρna
N (r) ≈ ρ̄

TFna
N,1/3(r)

= N2 ρ̄TFna
(N1/3 r) (p =

1
3
). (25)

The Thomas–Fermi profile ρ̄TFna
(r) does not have a closed form,

but a very accurate parametrization is provided in Ref. 51. While
I0[ρ̄TFna

] has a finite value, I2[ρ̄TFna
] diverges. This latter divergence

has consequences for the large N (or, equivalently, large-Z) behav-
ior of Ex[ρna

N ], which was somehow overlooked in earlier works5,6,15

and was recently reconsidered.16,17 In particular, we have the large-N
asymptotics,16,17

I0[ρna
N ] = ana

0 N5/3
+ ana

1 N log (N) + ⋅ ⋅ ⋅ , (26)

I2[ρna
N ] = bna

1 N log (N) + bna
2 N + ⋅ ⋅ ⋅ . (27)

2. Bohr atoms
The (closed shell) Bohr atoms densities (writing “Bohr” for

“Sqc”) are given by

ρBohr
N (r) = 2

kN

∑
n=1

n−1

∑
ℓ=0

ℓ

∑
mℓ=−ℓ

∣ψnℓmℓ
(r)∣2, (28)

with the hydrogenic orbitals ψnℓmℓ
(r) = Rnℓ(r)Yℓmℓ

(θ,ϕ) and
k2 = 1, k10 = 2, k28 = 3, . . ..

Atomic ions with N non-interacting electrons (NIEs) and
nuclear charge Z obviously have in their ground state exactly the
electron density

ρIonNIE
Z,N (r) = Z3 ρBohr

N (Zr) (NIE). (29)

The exact density ρIon
Z,N(r) of an interacting (non-relativistic) atomic

ion with Z ≫ N asymptotically approaches the NIE one,

ρIon
Z,N(r) → ρIonNIE

Z,N (r) (Z ≫ N). (30)

The Bohr atom densities satisfy asymptotic particle-number
scaling with p = −2/3,

ρBohr
N (r) ≈ ρ̄TFBohr

N,−2/3(r) =
1
N
ρ̄TFBohr

(N−2/3 r). (31)

The TF profile ρ̄TFBohr
(r) has a simple closed form that is

reported, for example, in Refs. 49 and 50. As for neutral atoms,
I0[ρ̄TFBohr

] is finite, while I2[ρ̄TFBohr
] diverges. The divergence of I2

for Bohr atoms has been carefully analyzed by Argaman et al.17

IV. COMPACT REPRESENTATION TO STUDY
THE GRADIENT EXPANSION

Previous works that used large-Z (or large-N) neutral and Bohr
atom data (“na” or “Bohr” for “Sqc” in our notation) to extract the
coefficient Bx numerically fitted the N-dependence of the exchange
energy W0[ρ] = Ex[ρ] (or the difference between Ex[ρ] and its
LDA counterpart, AxI0[ρ]) for large N.15,17 This procedure relies
on knowledge of the large-N behavior (see Appendix A), which, in
view of the diverging nature of I2[ρSqc

N ], can easily lead to erroneous

J. Chem. Phys. 159, 234114 (2023); doi: 10.1063/5.0174592 159, 234114-4

Published under an exclusive license by AIP Publishing

 20 D
ecem

ber 2023 19:46:28

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

assumptions.6,15–17 Moreover, a separate fit for each sequence (Sqc)
needs to be done.

Here, we rely on a different procedure:16 Using numerical den-
sities ρ(r) = ρSqc

N (r) and energies Wi[ρSqc
N ] (where i = x or i =∞),

we compute for various sequences (Sqc) and increasing particle
numbers N the values

Wi[ρSqc
N ] − Ai ⋅ I0[ρSqc

N ]

I2[ρSqc
N ]

= B̃Sqc
i (N). (32)

For N →∞, each sequence ρSqc
N (r) approaches the limit of a slowly

varying density. Therefore, if the GEAs are valid for the functionals
W i[ρ], the numbers B̃Sqc

i (N) will approach the sought coefficients
Bi, as explicitly shown in Eq. (19) for a scaled profile (note that
the constant Bi is expected to be approached slower than ∝N−1/3

for neutral and Bohr atoms). Whether Bi will be the same for all
sequences (i.e., whether they are profile-independent and whether
they are the same for a scaled profile and for neutral and Bohr
atoms) is an open question, but this approach allows us to use data
from different sequences to address this point more easily than the
approach based on fitting the N-dependence of the energy. It also
allows us to combine data obtained from scaled density profiles and
data obtained from neutral and Bohr atoms, as the leading-order N-
dependence of numerator and denominator (whether linear or with
logarithmic terms in N) will cancel if the GEAs are valid.

A. Densities
The systems we have considered to generate data for B̃Sqc

i (N)
are as follows:

● closed-shell neutral atoms, treated at the Hartree–Fock level,
● closed-shell Bohr atoms, and
● only for BSqc

∞ (N): the particle-number scaled profile
∝
√

r e−r , which was also used in Ref. 27.

The full computational details are reported in Sec. VI. Although
HF densities were used for the neutral atoms, we do not expect
much difference between these results and results coming from
Optimized-Effective-Potential (OEP) densities (see Sec. VI B). We
should also immediately mention that generating accurate data for
W∞[ρ] with large particle numbers is very challenging. For this
reason, data for BSqc

∞ (N) are limited to N ≤ 60.

B. Results
Our results for BSqc

i (N) are reported in Fig. 1, together with the
various values for Bi from the literature of Table I.

Figure 1 shows a surprising symmetry: the two extreme limits of
correlation for the XC functional seem to have very similar effective
gradient expansions in magnitude but with opposite signs.

The second interesting feature is that the profile-dependence
seems rather small, giving some hope for the existence of a univer-
sal gradient expansion for finite systems. Regarding exchange, we
do not have data with a fixed scaled profile (which would require
KS inversion techniques), and thus, we do not know whether neu-
tral and Bohr atoms give similar results because of their similar
asymptotic diverging behavior of the GEA integral.17

FIG. 1. Numerical values for B̃Sqc
x (N) and B̃Sqc

∞ (N) of Eq. (32) for different
sequences of densities. Green: neutral atoms. Red: Bohr atoms. Blue: ρSqc

N (r)
=

2N
15 π3/2

√

r e−r . The values for Bi of Table I from the literature are also shown.
HF densities were used for the neutral atoms.

We should stress that our data are limited to relatively small
numbers of electrons and that the asymptotic value of B̃Sqc

i (N) is
approached very slowly (as N−1/3 for scaled profiles and even slower
for neutral and Bohr atoms), which means that although the data
look reasonably flat, the asymptotic value is probably still further
out. Indeed, this seems to be confirmed by the value BARCB

x , also
shown in the figure, which was extracted in Ref. 17 from data for
the Bohr atoms at much larger N. However, we also see in the figure
that very successful GGAs as PBE and B88 have Bx values close to our
data, suggesting that the chemically relevant region is in the range
we are considering here rather than the final N →∞ limit. This is
further discussed in Appendix A.

For B∞, we see that the PC model36 is surprisingly good,
especially considering its fully non-empirical derivation, which was
based on strictly correlated electrons in an almost uniform density.
The fact that it works so well for finite systems is certainly remark-
able. The values obtained from the PBE and PBEsol functionals
are way too small. Note that our numerical values B̃Sqc

∞ (N) > 0 are
variational and therefore possibly slightly too high.52

For Bx, Fig. 1 confirms previous studies on gradient expansion
and the large-Z neutral and Bohr atoms,5,15,17 which can now be
easily visualized together using our B̃Sqc

i (N).

V. IMPLICATIONS FOR THE LIEB–OXFORD BOUND
The LO inequality21–23 provides a lower bound for the XC

energy in terms of the integral I0[ρ] of Eq. (9) and has been used
as an exact constraint in many successful approximations for the XC
functional.1,7,24 Including the two functionals Ex[ρ] and W∞[ρ], the
LO bound implies a chain of inequalities,

− C∫ d3r ρ(r)4/3
≤W∞[ρ] ≤ Exc[ρ] ≤ Ex[ρ] ≤ 0, (33)

where the optimal value of the positive constant C satisfies23

1.444 23
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∣A∞ ∣

≤ C ≤ 1.5765. (34)
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Dividing Eq. (33) by −I0[ρ], we obtain

0 ≤
−Ex[ρ]
I0[ρ]

≤
−Exc[ρ]

I0[ρ]
≤
−W∞[ρ]

I0[ρ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ΛC[ρ]

≤ C. (35)

(Equivalently, the functional Λ[ρ] = 1
∣Ax ∣

ΛC[ρ] has been also used to
analyze the LO bound in previous works.26,27,53)

The lower bound ∣A∞∣ for C in Eq. (34) is the highest value of
the functionalΛC[ρ] in Eq. (35) ever observed: a floating bcc Wigner
crystal with uniform one-electron density.45 The upper bound has
been proven in Ref. 23.

Lieb and Oxford22 also proved that if in Eq. (33), we consider
only densities with a fixed number of electrons N, there is an optimal
constant c(N) for each N and that c(N) ≤ c(N + 1).

The functional ΛC[ρ] has been used in previous works to
improve the lower bound for c(2) (which plays a role in XC
approximations such as SCAN7) and for c(N ≤ 60). Since27,28

c(N) = sup
ρ↦N

ΛC[ρ], C = lim
N→∞

c(N) = sup
ρ
ΛC[ρ], (36)

improving the lower bounds for c(N) amounts to find densities that
give particular high values for ΛC[ρ].

In Refs. 27 and 28, it was observed that certain density profiles,
such as a spherically symmetric exponential, ρ̄(r)∝ e−r , have very
high values of ΛC[ρ] already for small N, while other profiles, such
as a sphere of uniform density, yield much lower values. In Sec. V A,
we use our results of Sec. IV to rationalize this observation.

A. Why are some density profiles more challenging
for the LO bound?

In Refs. 27 and 28, values for ΛC[ρ̄N,0] were obtained by using
different spherically symmetric profiles ρ̄(r), with particle-number
scaled densities ρ̄N,p defined in Eq. (14). Note that due to Eq. (20),
ΛC[ρ̄N,p] is independent of p. By inserting Eq. (18) into the definition
of ΛC[ρ] of Eq. (35), we see that, for large N,

ΛC[ρ̄N,p] = −A∞ − B∞
I2[ρ̄]
I0[ρ̄]

N−2/3
+ ⋅ ⋅ ⋅ . (37)

Since B∞ > 0, the value −A∞ > 0 is approached from below as N
grows, indicating that the bcc Wigner crystal value is a local max-
imum for ΛC[ρ]. Moreover, we see that density profiles with small
values of the ratio I2[ρ̄]/I0[ρ̄] will approach this maximum faster
than density profiles for which this ratio is high.

Although the expansion of Eq. (37) is valid for large N, the ratio
I2[ρ̄]/I0[ρ̄] is an excellent predictor for detecting profiles with high
values ofΛC, already for N = 2. This is illustrated in Fig. 2, where the
values of ΛC[ρ̄2,0] from Table 1 of Ref. 27 are reported as a function
of the corresponding ratio I2[ρ̄]/I0[ρ̄]. This ratio can thus provide
good guidance in the choice of density profiles to improve the lower
bound for the optimal constants c(N).

The simple PC model36 WPC
∞ [ρ] = APC

∞ I0[ρ] + BPC
∞ I2[ρ] yields

a rough estimate for ΛC[ρ] (see the straight line in Fig. 2),

ΛPC
C [ρ̄N,p] = APC

∞ − BPC
∞

I2[ρ̄]
I0[ρ̄]

N−2/3. (38)

FIG. 2. ΛC[ρ̄2,0] of the different profiles from Table 1 of Ref. 27 plotted against the
ratio I2[ρ̄]/I0[ρ̄] of the GEA and LDA integrals, defined in Eqs. (9) and (10). The
red straight line is the prediction from the PC model36 [see Eq. (38)]. The horizontal
green and purple lines are the Lieb–Oxford lower bounds for N = 2 obtained from,
respectively, Refs. 22 and 27, whereas the orange line is the lower bound for the
general LO bound obtained from Refs. 54 and 23. Densities with an infinite I2
integral have been excluded.

The radial density profiles that fall on top of the PC model line in
Fig. 2 are ρ(r)∝ (1 + r)−n, with n = 4, 5, 6, 7 and 10, an empirical
observation for which we do not have an explanation.

Some of the profiles ρ̄ considered in Ref. 27 do not have a finite
GEA integral I2 and have been excluded from Fig. 2. One such profile
is the “droplet,” corresponding to a sphere of uniform density. In this
case, the integral I2 diverges (see Appendix B), leading to a different
behavior for large N (liquid drop model27), namely,

ΛC[ρ̄Dro
N,p ] = −A∞ + q1 N−1/3

+ q2 N−2/3
+ ⋅ ⋅ ⋅ , (39)

where both q1 and q2 are negative.27

If instead of scaled density profiles, we use the neutral atom
sequence, we have yet a different large-N dependence due to the
asymptotic divergence of the I2 integral discussed in Sec. III B 1,
namely,

ΛC[ρ̄na
N ] = −A∞ −

bna
1

ana
0

N−2/3 log (N) + ⋅ ⋅ ⋅ , (40)

where ana
0 and bna

1 are positive constants appearing in Eqs. (26)
and (27). Comparing with the asymptotic behavior of Eq. (37),
Eq. (39) seems to explain the empirical observation that ΛC val-
ues for uniform droplets approach the large-N limit very slowly26,27

and, Eq. (40), that also neutral atom densities are not particularly
challenging for the LO bound.28

B. The functional E el[ρ]
In this section, we consider the functional Eel[ρ] that appears in

the strong-coupling limit of the adiabatic connection (AC) that has
the Møller–Plesset (MP) perturbation series as expansion at weak
coupling,16,29,30
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Eel[ρ] = min
{r1 ,...,rN}

⎧⎪⎪
⎨
⎪⎪⎩

N

∑
i<j=1

1
∣ri − rj ∣

−
N

∑
i=1
∫ d3r

ρ(r)
∣ri − r∣

+U[ρ]
⎫⎪⎪
⎬
⎪⎪⎭

,

N = ∫ ρ(r)d3r.

(41)

The functional Eel[ρ] is the minimum electrostatic energy of a
neutral system composed by N identical point charges exposed to
a classical continuous charge distribution with charge density ρ(r)
of opposite sign and provides another lower bound16,29,30 to the SIL
functional, Eel[ρ] ≤W∞[ρ]. Dividing again by −I0[ρ], in addition
to Eq. (35), we also have

−W∞[ρ]
I0[ρ]

≤
−Eel[ρ]

I0[ρ]
. (42)

The equality is reached for the case of the uniform electron gas
(UEG) density,45

−W∞[ρUEG]

I0[ρUEG]
= ∣A∞∣ =

−Eel[ρUEG]

I0[ρUEG]
, (43)

where W∞[ρUEG] is realized by a floating bcc Wigner crystal with
uniform density,45 while Eel[ρUEG] is realized by any of the equiv-
alent bcc Wigner crystal origins and orientations. The important
point is that the two functionals have the same value.45

Values for Eel[ρ̄
Sqc
N ] have been computed for neutral and Bohr

atom densities, and for various particle-number scaled profiles in
Ref. 16, and are combined, in Fig. 3, with our present data to ana-
lyze the relationship with the LO bound. The figure suggests that
−Eel[ρ]/I0[ρ] approaches its UEG value ∣A∞∣ from above.

One could be tempted to think that this is a general fea-
ture. However, there is a simple counterexample with the property
−Eel[ρ]/I0[ρ] < ∣A∞∣: Consider the normalized density profile,

ρ̄ =
(n + 2)n+3

4π Γ(n + 3)
e−(n+2)rrn, n > 0. (44)

FIG. 3. Numerical values for the functionals −Eel[ρ]/I0[ρ] and −W∞[ρ]/I0[ρ].
Blue: scaled exponential density. Orange: scaled Gaussian density. Green: neutral
atoms. Red: Bohr atoms. Purple: scaled beryllium profile. Brown: scaled argon
profile. Gray: ρSqc

N (r) =
2N

15 π3/2

√

r e−r . Horizontal black line: ∣AUEG∣ = ∣A∞∣ from

Refs. 23 and 54. Horizontal magenta line: the upper bound CLLS
UB proven in Ref. 23.

As n→∞, this density approaches the Dirac measure of the unit
sphere (a two-dimensional distribution, uniformly concentrated
over the surface of the unit ball). For N = 1, the value Eel remains
finite, while I0 diverges, so their ratio will tend to 0. In such patho-
logical cases, then the LO bound becomes very loose, and Eel[ρ] in
Eq. (42) provides a much tighter lower bound to W∞[ρ].

A caveat is that Eel[ρ] has also many local minima. For W∞[ρ],
this was not a problem because even if one does not reach the
global minimum, the computed value is still variational, provid-
ing a rigorous lower bound for C in Eq. (35). For Eel[ρ], instead,
a local minimum would provide an invalid lower bound to W∞[ρ]
in Eq. (42). However, in our experience, the local minima of Eel[ρ]
are all very close in energy, so, in practice, this might not be a severe
problem.

VI. COMPUTATIONAL DETAILS
A. Densities

For the neutral atoms, Hartree–Fock calculations were per-
formed using pyscf 2.0.1.55 An aug-cc-pVQZ56 basis set was used,
except for Ca (jorge-qzp57), Kr (cc-pVQZ56), and Xe (jorge-aqzp57).

The densities of the Bohr atoms and
√

r e−r were computed
analytically.

B. Exchange functional E x[ρ]
For neutral atoms, we used the Hartree–Fock exchange for

the calculations described in Sec. VI A above. Although the
Hartree–Fock exchange energy is not exactly the same as Ex[ρ]
of KS DFT, the two values are very close, and for the qualitative
study performed here, the small differences should be unimpor-
tant. For example, for Z = 10, our EHF

x is equal to −12.0847, while
the optimized effective potential (OEP) result, EOEP

x , from Ref. 17 is
−12.1050. For Z = 36, we have EHF

x = −93.805 and EOEP
x = −93.833.

For the Bohr atoms, the data for Ex[ρ] are taken from Ref. 17.

C. Strong-coupling functional W∞[ρ]
Here, we report the main details of the SCE calculations, with

the full code to compute W∞[ρ] for N electrons in a given radial
density profile available at https://github.com/DerkKooi/jaxsce.

All the densities considered here have spherical symmetry, and
W∞[ρ] was computed following the same procedure as in Refs. 18,
27, 28, and 58. This procedure relies on the radial optimal maps
fi(r) of Ref. 18, which are known to provide either the exact W∞[ρ]
or a very close variational estimate of it.52 The calculation also
requires a minimization on the relative angles (between electronic
positions), which becomes very demanding as the number of elec-
trons increases, due to the presence of many local minima. Overall,
we can only be sure to provide a variational estimate of W∞[ρ],
which is obtained as

W∞[ρ] +U[ρ] = ∫
a2

a1

4πr2ρ(r)Vee(r) dr, (45)

where a1 and a2 are defined below Eq. (48) and

Vee(r) =∑
i<j

1
∣ri(r) − rj(r)∣

. (46)
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Here, in spherical polar coordinates, ri(r) = ( fi(r), θi(r),ϕi(r)),
with i = 1, . . . , N being a set of N strictly correlated position vectors,
fixed by the distance r of one of the electrons from the origin. The
radial maps (or co-motion functions) fi(r),

R(r) = ( f1(r), f2(r), f3(r), . . . , fN(r)), (47)

with f1(r) = r, are obtained from the density ρ(r) via the cumulant
function

Ne(r) = ∫
r

0
4πx2ρ(x) dx (48)

and its inverse N−1
e (y), as detailed in Ref. 18. The integration limits

in Eq. (45) are ak = N−1
e (k), with k = 1 and 2 (but any pair of adjacent

ak would work due to cyclic properties of the maps18). For each value
of r ∈ [a1, a2], the set of relative angles {θi(r),ϕi(r)}i=1,...,N mini-
mizes the electron–electron interaction when the radial distances of
the electrons from the nucleus are set equal to R(r) of Eq. (47).

The inverse cumulant N−1
e used in the calculation of the co-

motion functions { fi} was either obtained analytically or by numer-
ical inversion using the Newton method. The integration yielding
W∞[ρ] was performed on an equidistant grid between a1 and
a2. For each r ∈ [a1, a2], we find the minimizing relative angles
{θi(r),ϕi(r)}i=1,...,N using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm59–62 in the jaxopt.BFGS function of jaxopt.63

The number of grid points used for integration was 1025. Starting
guesses of the optimal angles were obtained by minimization start-
ing from 30 000 sets of random angles at three different grid points:
one close to the start of the interval, one in the middle of the interval,
and one close to the end of the interval. From these three starting
points, successively lower minima were obtained by sweeping for-
ward and backward on the integration grid until convergence. For
the last grid point, for which there is one less electron in the system,
a separate angular minimization was performed from 30 000 sets of
random angles.

VII. CONCLUSIONS AND PERSPECTIVES
We have analyzed gradient expansions of the weak- and strong-

coupling functionals Ex[ρ] and W∞[ρ] through the lens of particle-
number scaling and neutral and Bohr atoms. Our main results are as
follows:

● the compact representation in Eq. (32), which allows us
to analyze an effective gradient expansion for all density
sequences at the same time,

● the surprising symmetry in the effective gradient expansions
of both functionals, which turn out to be very similar in
magnitude but with opposite sign (see Fig. 1), and

● a fresh look at the Lieb–Oxford bound for finite N, ration-
alizing why some density profiles give better bounds than
others (Sec. V A).

Our findings can be used as constraints in building new XC func-
tionals. For example, the fact that the coefficient of the gradient
expansion should become positive at strong-coupling is a constraint
ignored in all approximations.

A question that seems to remain open is whether the larger (in
magnitude) gradient expansion coefficient for exchange with respect

to the one obtained by perturbing an infinite system with uniform
density is due to the singular behavior of atomic densities with many
electrons close to the nucleus or whether this coefficient is simply
different for finite systems. This question could be answered by com-
puting Ex[ρ] for particle-number scaled densities, Eq. (14), starting
from a given profile ρ̄ with a finite I2[ρ̄]. This calculation, how-
ever, requires a Kohn–Sham inversion for a given density, which
is demanding for systems with many particles. For the functional
W∞[ρ], it seems that a scaled profile and neutral/Bohr atoms give
very similar results, although we could only investigate here N ≤ 60.
Another open question is the universality of Bx and B∞ for finite
densities because we have only studied three atom-like density pro-
files. To provide more evidence for the density independence of Bx
and B∞, other density profiles, such as a scaled Gaussian density
or diatomic molecules, should be studied in the future. The latter
will also tell us about the transferability of our results from atoms to
molecules.
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APPENDIX A: EXCHANGE FOR BOHR
AND NEUTRAL ATOMS

In this appendix, we analyze the results of Argaman et al.17

(hereafter denoted as ARCB) for the exchange energy of Bohr and
neutral atoms in the light of our B̃Sqc

x (N).
Notice that ARCB defined the Bohr atoms with external poten-

tial −Z/r (with Z = N) rather than −1/r as we did here. This
corresponds to the scaling of Eq. (29) for the densities,

ρBohrARCB
N (r) = N3 ρBohr

N (Nr)

≈ N2 ρ̄TFBohr
(N1/3r), (A1)

where we have used Eq. (31) in the second line. Due to Eq. (14), this
is asymptotic particle-number scaling with p = 1

3 , as in the neutral
atom case. Due to Eq. (6), the first line of Eq. (A1) implies

Ex[ρBohrARCB
N ] = N ⋅ Ex[ρBohr

N ]. (A2)

Our B̃Sqc
x (N) is insensitive to scaling, making visualization of the

results independent of which definition is used.
ARCB used two different procedures for neutral and Bohr

atoms to extract the final value of Bx and, on further inspection,
rightly so (see below). For neutral atoms, they only have values in a
range of N = Z similar to ours. They find the beyond-LDA exchange
energies,

ΔEna
x (N) = Ex[ρna

N ] − Ax ⋅ I0[ρna
N ], (A3)

very accurately described by the simple two-parameter fit [Eq. (3) of
ARCB],

ΔEna
x (N) = −0.0254 N log (N) − 0.0560N. (A4)

For Bohr atoms, instead, for which ARCB have data for particle
numbers up to N = 7590, they fitted separately Ex[ρBohr

N ] as [Eq. (11)
of ARCB, where Ax ⋅ aBohr

0 = −( 2
3)

1/3 4
π2 = −0.354],

Ex[ρBohr
N ] = Ax ⋅ aBohr

0 N2/3

+ eBohr
1 log (N) + eBohr

2

+
eBohr

5 log (N) + eBohr
6

N2/3 + ⋅ ⋅ ⋅ . (A5)

Here, our powers are smaller by a factor N = Z due to Eq. (A2).
Independently, they fitted WLDA

0 [ρBohr
N ] = Ax ⋅ I0[ρBohr

N ] as

I0[ρBohr
N ] = aBohr

0 N2/3

+ aBohr
1 log (N) + aBohr

2

+
aBohr

3 log (N) + aBohr
4

N1/3

+
aBohr

5 log (N) + aBohr
6

N2/3 + ⋅ ⋅ ⋅ (A6)

until order N−
1
3 because aBohr

5 and aBohr
6 are very difficult to deter-

mine accurately from data. The values of the coefficients can be
found in Ref. 17. Taking the difference, we obtain the beyond-LDA
exchange energy ΔEBohr

x (N) = Ex[ρBohr
N ] − Ax ⋅ I0[ρBohr

N ],

ΔEBohr
x (N) = βBohr

1 log (N) + βBohr
2

+
βBohr

3 log (N) + βBohr
4

N1/3

+
βBohr

5 log (N) + βBohr
6

N2/3 + ⋅ ⋅ ⋅ (A7)

(where βn = en − Ax ⋅ an, note that e3 = e4 = 0), which for the first
two terms gives

ΔEBohr
x (N) = −0.033 77 log (N) − 0.054 55, (A8)

with the log(N) coefficient assumed in ARCB to be βBohr
1 ≈ − 1

3π2

= −0.033 77. (ARCB numerically found eBohr
1 ≈ − 7

27π2 and Ax

⋅ aBohr
1 ≈ 2

27π2 .) [In their Eq. (9), ARCB defined B = −β1, not to be
confused with our Bx. Then, Eq. (17) in ARCB reads β1 =

27
10β

GEA
1 .]

If, as an experiment, we fix (as ARCB did for neutral atoms) the
coefficients by fitting ΔEBohr

x values for different limited ranges of
N (“small”: 2 ≤ N ≤ 182, “all”: 2 ≤ N ≤ 7590, and “large”: 1638 ≤ N
≤ 7590), we find

ΔEBohr
x (N) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−0.032 56 log (N) − 0.065 50 (small N),
−0.032 98 log (N) − 0.064 20 (all N),
−0.033 18 log (N) − 0.062 77 (large N).

(A9)
We see that the log(N) coefficient (with their extracted value being
βBohr

1 = −0.033 77) is fairly insensitive to the fitting range: Even with
the small-N range (similar to the one used by ARCB for neutral
atoms), the error is only 3.6%. Thus, it seems that extraction of
the leading coefficient β1 with the simple two-parameter fit is rel-
atively robust even when we have data available only in a smaller
range of N. We should still stress that, as suggested by the two dif-
ferent expansions of Eqs. (A5) and (A6), it is actually the exchange
beyond its leading N2/3 term that is really very accurately described
by a two-parameter fit over a broad range of N. The LDA [Eq. (A6)]
has a much more complicated N dependence, and its contribu-
tion beyond the leading N2/3 term is not at all well described by a
simple two-parameter form. However, such a contribution is also
about one order of magnitude smaller with respect to the one of Ex.
Indeed, if we repeat the experiment of fitting the N-dependence of
Ex[ρBohr

N ] − Ax aBohr
0 N2/3 on the N ≲ 150 data, we get for the log(N)

coefficient agreement with the full fit within 0.3%. Hence, the 3.6%
error of β1 in the first line of Eq. (A9) is dominated by the LDA part.
On the other hand, for neutral atoms, subtraction of the LDA dimin-
ishes the oscillations from the shell structure and makes data easier
to fit.15

To extract Bx in ΔEx(N) = Bx ⋅ I2(N) + ⋅ ⋅ ⋅ from values of
ΔEx(N) given by Eq. (A7), we need the coefficient b1 of the large-N
expansion,

I2[ρSqc
N ] = bSqc

1 log (N) + bSqc
2 + ⋅ ⋅ ⋅ .

Its value has been determined analytically by ARCB, both for Bohr
and neutral atoms. For the Bohr atoms, they get bBohr

1 = 16
(9π)1/3

= 5.251 97, which allows them to extract the value
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BARCB
x =

βBohr
1

bBohr
1
=
− 1

3π2

16
(9π)1/3

= −
1

16π(3π2
)

1/3 ≈ −0.0064 (A10)

listed in Table I. For neutral atoms, again comparing the coefficient
of the log(N) term in the fit of ΔEx with the one of I2, they obtain a
very similar value, leading to the conjecture that Bx is the same for
both series (as also apparent from our Fig. 1).

The GEA integral I2[ρBohr
N ], similarly to I0[ρBohr

N ], is not well
described by a simple two-parameter form as repeating the fits in
the different ranges of N gives

I2[ρBohr
N ] =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

4.7737 log (N) + 28.1209 (small N),
4.8671 log (N) + 27.7866 (all N),
5.0248 log (N) + 26.5559 (large N),

where the log(N) coefficient (exact value17 16
(9π)1/3 = 5.2520) has an

error of around 10% in the small-N range and still 4% for large
N. Although the next orders of I2[ρSqc

N ] have not been studied in
previous work, we will for now assume the expansion

I2[ρSqc
N ] = b1 log (N) + b2

+
b3 log (N) + b4

N1/3 , (A11)

which matches the next order terms of I0 [see Eq. (A6)]. Imposing
the ARCB value b1 =

16
(9π)1/3 for the leading coefficient, we find by

varying the other three coefficients b2, b3, and b4 the accurate fit

I2[ρBohr
N ] =

16
(9π)1/3 log (N) + 23.7188

+
1.2934 log (N) + 4.1990

N1/3 . (A12)

Alternatively, by varying all coefficients b1, b2, b3, and b4, we
obtain

I2[ρBohr
N ] = 5.4072 log (N) + 22.1207

+
1.8551 log (N) + 5.6657

N1/3 (small N),

I2[ρBohr
N ] = 5.3180 log (N) + 22.9846

+
1.5841 log (N) + 4.8467

N1/3 (all N),

I2[ρBohr
N ] = 5.2302 log (N) + 24.0881

+
0.8543 log (N) + 4.9561

N1/3 (large N).

An accurate estimate for the exact b1 =
16

(9π)1/3 = 5.2520 is
recovered only when the fitting is limited to large N.

We can now use the fits of Eqs. (A8), (A9), and (A12) to find
expressions for B̃x(N) = ΔEx

I2
via Eq. (32). The two combinations that

we use are

B̃2,1(N) =
−0.033 77 log (N) − 0.054 55

16
(9π)1/3 log (N) + 23.7188

, (A13)

obtained using Eq. (A8) plus the two leading orders of Eq. (A12),
and

B̃2,3(N) =
−0.033 18 log (N) − 0.062 77

16
(9π)1/3 log (N) + 23.7188 + 1.2934 log (N)+4.1990

N1/3

, (A14)

which combines the simple two-parameter fit of ΔEx for large N
of Eq. (A9) and the full three-parameter fit of I2 of Eq. (A12). The
number of parameters discussed here are those left free in the fit
(we do not count the exact ones that were not varied in the fitting
procedure). The subscript in B̃n,m(N) are the numbers of the fitted
(free) parameters in the numerator (n) and in the denominator (m).
We compare these two expressions against the data for the exact
B̃Bohr

x (N) in Fig. 4. Note that if we only use the two leading orders
from ΔEx [Eq. (A8)] and from I2 [Eq. (A12)], we are still below the
data even at N as large as 7000. This shows that the asymptotic value
is reached extremely slowly, although both fits capture the general
trend well.

FIG. 4. Exact data (red dots) for B̃Bohr
x (N) and two different asymptotic expansion for it: B̃2,1(N) (solid green line) and B̃2,3(N) (solid blue line) for small N (left) and large N

(right). See Eqs. (A13) and (A14) for the full definition.
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APPENDIX B: GEA INTEGRAL
OF THE DROPLET DENSITY

In Ref. 58, the profile density for the droplets (spheres of radius
1 and uniform density) was approached as the limit α→∞ of the
radial profile,

ρ̄α =
k(α)

1 + eα(r−1) , (B1)

where the constant k(α) ensures that ∫
∞

0 4πr2ρ̄α(r) dr = 1.
With the profile ρ̄α(r), it is possible to show explicitly the

divergence of the integral I2 for the droplet. In fact, lengthy but
straightforward calculations lead to the result that as α→∞, I2
grows linearly with α,

I2[ρ̄α→∞] = (
4π
3
)
−2/3 18π

5
α +O(α0

). (B2)

For the droplet density profile, thus the GEA expansion completely
breaks down, explaining the different behavior26,27 of Eq. (39).
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