
Chapter 4 
The Strong-Interaction Limit of Density 
Functional Theory 

Gero Friesecke, Augusto Gerolin, and Paola Gori-Giorgi 

Abstract This is a comprehensive review of the strong-interaction limit of density 
functional theory. It covers the derivation of the limiting strictly correlated electrons 
(SCE) functional from exact Hohenberg–Kohn DFT, basic aspects of SCE physics 
such as the nonlocal dependence of the SCE potential on the density, equivalent 
formulations and the mathematical interpretation as optimal transport with Coulomb 
cost, rigorous results (including exactly soluble cases), approximations, numerical 
methods, integration into Kohn–Sham DFT (KS SCE), and applications to molecu-
lar systems, an example being that KS SCE, unlike the local density approximation 
or generalized gradient approximations, dissociates H. 2 correctly. We have made an 
effort to make this review accessible to a broad audience of physicists, chemists, 
and mathematicians. 

4.1 Introduction 

The strong-interaction limit of DFT is the inhomogeneous low-density limit associ-
ated with the uniform coordinate scaling 

. ργ (r) = γ 3ρ(γ r)
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of the single-particle density at fixed particle number, with .γ → 0. In this limit, 
the Levy–Lieb functional, which gives the minimum kinetic and interaction energy 
subject to the given density, has the leading order asymptotics 

. FLL[ργ ] ∼ γ VSCE
ee [ρ],

and the corresponding optimal wavefunction .�γ has the asymptotics 

. 
∑

s1,...,sN∈Z2

|�γ (r1, s1, . . . , rN, sN)|2 ∼ γ 3NρN(γ r1, . . . , γ rN),

where .ρN solves the variational principle of having minimal Coulomb energy 
subject to the given density . ρ and .VSCE

ee [ρ] denotes the resulting minimal energy. 
This appears to be the only case in which one can obtain insight into how to 

extract information about the interaction energy directly from the density. As it turns 
out, in this limit none of the ingredients from the traditional “Jacob’s ladder” of DFT 
approximations (local density, local density gradients, Kohn–Sham kinetic energy 
density, Hartree–Fock exchange, virtual orbitals) play any role. Instead, maps based 
on integrals not derivatives of the density appear. These maps are mathematically 
related to the field of optimal transport, and physically describe strictly correlated 
electrons (SCE). The SCE functional .VSCE

ee appearing above is the limiting Hartree-
exchange-correlation functional. 

While the strong-interaction limit is, of course, not reached in nature, it points 
the way towards the real physics happening in molecular systems containing strong 
correlations, without having to leave the realm of Kohn–Sham DFT. Two important 
examples whose physics is missed by Kohn–Sham DFT with semilocal or hybrid 
exchange-correlation functionals but captured correctly by integrating the SCE 
functional into Kohn–Sham DFT (KS SCE) are weakly charged nanosystems, see 
Fig. 4.11, and H. 2 near the dissociation limit, see Fig. 4.14. 

This chapter provides a self-contained introduction to this limit and its fascinat-
ing physics and mathematics which has been unearthed in the past two decades, and 
reviews the current state of the art. 

4.2 The Many-Electron Schrödinger Equation and Universal 
Density Functional 

In this section we quickly introduce the time-independent electronic Schrödinger 
equation and the exact reformulation of the ground state problem via a universal 
density functional.
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4.2.1 The Many-Electron Schrödinger Equation 

We consider a quantum mechanical system of N non-relativistic electrons (of mass 
. me and charge . −e), moving around classical nuclei with positions . R1, . . . , RM ∈
R

d and charges .Z1e, . . . , ZMe (Born–Oppenheimer approximation). Our main 
interest is in the physical space . R3, but we consider the general space dimension 
.d ≥ 1 since it will be instructive to illustrate key properties of the strong interaction 
limit with lower dimensional examples. The electrons are described by a wave 
function .� : (Rd × Z2)

N → C of N positions .ri ∈ Rd and spin coordinates 
.si ∈ {↑,↓} = Z2. 

The Pauli exclusion principle states that the electronic wave function must be 
antisymmetric with respect to permutations of the electron coordinates, 

. �(rσ(1), sσ(1), . . . , rσ(N), sσ(N)) = sign(σ )�(r1, s1, . . . , rN, sN), σ ∈ SN,

(4.1) 

where .SN denotes the group of permutations of the indices .1, . . . , N . The set of  
square-integrable N -electron wave functions, .{� ∈ L2((Rd × Z2)

N ;C) : (4.1)}, 
will be denoted .

∧N
i=1 L2(Rd × Z2;C). The one-body density of an electronic wave 

function .� ∈ ∧N
i=1 L2(Rd × Z2;C) is defined by 

. ρ�(rj ) = N
∑

s1,...,sN∈SN

∫

R
d(N−1)

|�(r1, s1, . . . , rN,Z2)|2
∏

i �=j

dri ,

∀j ∈ {1, . . . , N}.

The energy .E[�, v] of a fermionic state . � with external potential . v : Rd → R

is given, in atomic units .h̄ = me = e = 1, by  

. E[�, v] = T [�] + Vee[�] + Vne[�, v], (4.2) 

where .T [�] is the kinetic energy, 

. T [�] = 1

2

∑

s1∈Z2

∫

R
d
· · ·

∑

sN∈Z2

∫

R
d

N∑

i=1

|∇ri
�(r1, s1 . . . , rN, sN)|2dr1 . . . drN ;

.Vee[�] is the electron-electron interaction energy 

.Vee[�] =
∑

s1∈Z2

∫

R
d
· · ·

∑

sN∈Z2

∫

R
d

N∑

1�i<j<N

w(ri − rj ) |�(r1, s1 . . . , rN, sN)|2dr1 . . . drN,
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and .Vne[�, v] is the electron-nuclei interaction energy, 

. Vne[�, v] =
∑

s1∈Z2

∫

R
d
· · ·

∑

sN∈Z2

∫

R
d

N∑

i=1

v(ri )|�(r1, s1 . . . , rN, sN)|2dr1 . . . drN,

where .w : Rd → R is an interaction potential satisfying .w(r) = w(−r), so that the 
total interaction potential 

.Vee(r1, . . . , rN) =
∑

1≤i<j≤N

w(ri − rj ) (4.3) 

is symmetric.1 Typically, 

.w(r) = |r|−1 (4.4) 

is the Coulomb electron repulsion and v is the Coulomb potential generated by M 
nuclei which are at positions . Rν with charges . Zν , 

.v(r) = −
M∑

ν=1

Zν

|r − Rν | . (4.5) 

If additional fields are present, the external potential v contains extra terms. 
The central quantity of interest is the ground state energy of the system. By the 

Rayleigh–Ritz variational principle, it is given by 

.E0[v] = inf{E[�, v] : � ∈WN }, (4.6) 

where the infimum is taken over the class .WN of wavefunctions which are 
antisymmetric and have finite kinetic energy, 

.WN = (4.7) 
⎧ 
⎨ 

⎩� ∈ 
N∧

i=1 

H 1(Rd × Z2; C) :
∑

s1,...,sN∈Z2

∫

R
dN 

|∇�|2dr1 . . . drN< + ∞, ||�||=1 

⎫ 
⎬ 

⎭ . 

Here .H 1 is the usual Sobolev space of square-integrable functions with square-
integrable gradient, and .||�|| denotes the .L2 norm of . �. The ground state 
energy (4.6) is well defined whenever the potentials v and w are sufficiently

1 We follow the usual convention to use the same letter .Vee both for the total interaction potential, a 
function on .RdN , and the associated quadratic form, a functional on the wavefunction space .WN . 
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regular so that the functional E is well defined on .H 1((Rd × Z2)
N). A simple  

sufficient condition in dimension .d = 3 which encompasses (4.5), (4.4) is v, 
.w ∈ L3/2(R3) + L∞(R3). 

Whether or not the infimum in (4.6) is actually a minimum, that is, a minimizing 
. � exists, is much more subtle. For neutral or positively charged molecules in 
dimension .d = 3 ((4.4), (4.5) with .Z = ∑M

i=1 Zi > N − 1) the answer is yes, 
as was proved by Zhislin [145] via a careful spectral analysis of the underlying 
Hamiltonian operator. For an alternative proof based on variational methods see 
Friesecke [48]. 

4.2.2 Universal Density Functional 

In quantum mechanics, the absolute value squared .|�(r1, s1, . . . , rN, sN)|2 of a 
wave function .� ∈ WN corresponds to an N -point probability distribution: it 
gives the probability density of finding the electrons at positions .ri ∈ Rd with spins 
.si ∈ Z2, i ∈ {1, . . . , N}. 

By integrating the N -point probability distribution over the spins, we obtain the 
N -point position density, 

.π�
N (r1, . . . , rN) :=

∑

s1,...,sN∈Z2

|�(r1, s1, . . . , rN, sN)|2, � ∈WN. (4.8) 

The single particle density .ρ�(rj ) is then obtained by integrating out all but one 
electron position .rj ∈ Rd , 

. ρ�(rj ) := N

∫

R
d(N−1)

π�
N (r1, r2, . . . , rj , . . . , rN)

∏

i �=j

dri , ∀ j ∈ {1, . . . , N}.

(4.9) 

We denote by .� 
→ ρ the relation between . � and . ρ given by Eqs. (4.8) and (4.9). 
This means that the wave function . � has single-electron density . ρ. 

Following the work of Hohenberg and Kohn [78], Levy [91] and Lieb [97] 
showed that the electronic ground state problem (4.6) can be recast as a minimiza-
tion over single-electron densities . ρ instead of many-electron wavefunctions . �: 

.E0[vne] = inf
ρ∈DN

{
FLL[ρ] + N

∫

R
d
vne(r)ρ(r)dr

}
, (4.10) 

with 

.FLL[ρ] = min

{
T [�] + Vee[�] : � ∈WN,� 
→ ρ

}
, (4.11)
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where .FLL is the Levy–Lieb functional. The above direct definition of .FLL by 
a constrained search replaced an earlier, indirect existence proof of a universal 
functional satisfying (4.10) [78]. The space .DN is defined as the set of densities 
. ρ coming from a wave function .� ∈ WN (i.e, .� 
→ ρ), i.e., the N -representable 
one-particle densities. It can be fully characterized [97] and is given by 

.DN =
{
ρ ∈ L1(Rd) : ρ � 0,

√
ρ ∈ H 1(Rd),

∫

R
d
ρ = N

}
. (4.12) 

Also, it is known that the minimum in (4.11) is attained. For more details about 
these matters see Chap. 3 by Lewin et al. 

4.3 The Strictly Correlated Electrons (SCE) Functional 

4.3.1 Constrained-Search Definition 

From the early days of DFT it has been clear that a useful approximation to the 
kinetic energy contribution in (4.11) is given by the functional 

.TS,LL[ρ] = min
�∈WN ,� 
→ρ

〈�|T |�〉 (4.13) 

and by its further approximation .TS[ρ] obtained by Kohn and Sham [85] via  
restricting the above search to Slater determinants built from orthonormal spin 
orbitals, 

.

TS[ρ] = min

⎧
⎨

⎩

N∑

i=1

∑

s∈Z2

∫

R
d

1
2 |∇ϕi(r, s)|2 : ϕi ∈ H 1(Rd × Z2;C)∀i,

〈ϕi |ϕj 〉 = δij ∀i, j,

N∑

i=1

∑

s∈Z2

|ϕi(r, s)|2 = ρ(r)∀r

⎫
⎬

⎭ .

(4.14) 

The natural analogue of .Ts,LL for the interaction energy contribution in (4.11) is 
the SCE functional 

.V SCE
ee [ρ] = inf

�∈WN ,� 
→ρ

〈�|Vee|�〉, (4.15) 

which was introduced by Seidl [122]. The acronym SCE stands for strictly corre-
lated electrons, and will be explained shortly. As detailed in the next section, the 
functional (4.15) is a rigorous leading-order asymptotic limit of .FLL[ρ] in the low-
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density regime, where interaction dominates, just as the kinetic functional (4.13) is a 
leading-order asymptotic limit at high density, where the kinetic energy dominates. 

What is more, there also exists a natural analogue to . TS for interaction, which 
approximates, in the case of N electrons in the physical space . R3, the high-
dimensional minimization over wavefunctions on 3N dimensional space in (4.15) 
by a minimization over just N maps on . R3; see Sect. 4.3.4. 

4.3.2 Derivation as a Low-Density or Strong-Interaction Limit 
of the Levy–Lieb Functional 

For any given N -particle density . ρ on . Rd , consider its dilation obtained by uniform 
coordinate scaling 

. ργ (r) = γ dρ(γ r),

where .γ > 0 is a scaling factor. Note that this scaling preserves the total particle 
number, 

. 

∫

R
d
ργ (r) =

∫

R
d
ρ(r) = N.

We are interested in the small-. γ regime, which corresponds to a low-density limit. 
If . � is a wavefunction with density . ρ, then the scaled wavefunction 

. �γ (r1, s1, . . . ., rN, sN) = γ
dN
2 �(γ r1, s1, . . . , γ rN, sN)

has density . ργ . But as first noticed by Levy and Perdew [92], scaling does not 
commute with constrained search. Instead, by an elementary change of variables, 

. T [�γ ] = γ 2T [�], Vee[�γ ] = γVee[�],

and therefore 

. FLL[ργ ] = min
�

γ ∈WN ,�
γ 
→ρ

γ

〈
�γ |T + Vee|�γ

〉

= γ min
�∈WN ,� 
→ρ

〈
�|γ T + Vee|�

〉

= γ 2F 1/γ [ρ], (4.16)
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where 

.Fλ[ρ] = min
�∈WN ,� 
→ρ

(
T [�] + λVee[�]

)
(4.17) 

is a Levy–Lieb functional with coupling constant . λ. This suggests, assuming that the 
minimization in the second line of (4.16) commutes with taking the limit .γ → 0, 

.FLL[ργ ] ∼
γ→0

γ V SCE
ee [ρ] (4.18) 

or equivalently, by starting from the Levy–Lieb functional with coupling constant, 
Eq. (4.17), as done in [122, 127] 

. lim
λ→∞

1
λ

Fλ[ρ] = V SCE
ee [ρ]. (4.19) 

Mathematically, as pointed out in [127] it is not obvious whether the minimization 
in the second line of (4.16) commutes with passing to the limit .γ → 0 since 
the optimal wavefunction depends on . γ . Nevertheless the above leading-order 
asymptotics can be rigorously justified; see Theorem 4.3 in the next section. 

Repeating the calculation in (4.16) without the kinetic energy and replacing 
“min” by “inf” shows that 

.V SCE
ee [ργ ] = γV SCE

ee [ρ], (4.20) 

whence the asymptotic result (4.18) can also be re-written as 

.FLL[ργ ] ∼
γ→0

V SCE
ee [ργ ]. (4.21) 

Off the low-density limit, we remark that .V SCE
ee still provides a rigorous lower bound 

for the Levy–Lieb functional, 

.FLL[ρ] ≥ V SCE
ee [ρ] ∀ ρ ∈ DN. (4.22) 

This is a trivial consequence of the constrained-search Definitions (4.11) and (4.15) 
and the nonnegativity of the kinetic energy functional T . For typical atomic densities 
on . R3, this lower bound is a significant improvement over the Lieb–Oxford bound 
with best known constant.
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Fig. 4.1 Numerically computed ground state wave functions for .Fλ[ρ] in (4.17) for .N = 4 and 
one-body density .ρ(r) = 1

2L
(1+cos( π

L
r)), r ∈ [−L,L] (.L = 5) for different values of . λ: .λ = 0.1, 

1, 10, . ∞. Shown: pair density .
∑

s1,s2,s3,s4

∫
dr3 dr4|�λ(r1, s1, r2, s2, r3, s3, r4, s4)|2. Picture from  

[21], see also [109] for a numerical approximation of (4.17) with .N = 2. The pair density on the 
left is governed by exchange effects, whereas the one on the right is governed purely by Coulombic 
correlations 

4.3.3 Enlarging the Constrained Search to Probability 
Measures 

The variational principle underlying the definition of .V SCE
ee [ρ] in (4.15), 

. Minimize 〈�|Vee|�〉 =
∫

R
dN

Vee(r1, . . . , rN) π�
N (r1, . . . , rN) dr1 . . . drN

over {� ∈WN : � 
→ ρ}, (4.23) 

with N -point density .π�
N as in (4.8), typically has no minimizer. That is, no 

minimizing wavefunction .� ∈ WN exists and the infimum in (4.15) is not 
attained.2 Physically, this reflects the phenomenon that if .�λ[ρ] is a sequence of 
square-integrable functions depending on a parameter .λ > 0 such that . 〈�λ|Vee|�λ〉
approaches the infimum in (4.15) as . λ tends to infinity—prototypical is the . �λ that 
minimizes .〈�|T + λVee|�〉 subject to .� 
→ ρ—then .|�λ|2 integrates to 1 but is 
typically concentrating on a lower dimensional subset, as depicted in Fig. 4.1. 

This basic shortcoming of (4.23)—that wavefunctions which are closer and 
closer to being optimal in the constrained search (4.15) do not converge to any 
proper wavefunction—can be overcome as follows [14, 32]. First, interpret the 
variational principle (4.23) as a variational principle for the N -point density 
as suggested by the second expression in (4.23); second, enlarge the space of 
admissible N -point densities to the space .P(RdN) of probability measures on 
.R

dN with density . ρ. Then the constrained search becomes well-posed, that is, 
optimizers exist. See Theorem 4.1 below. This enlargement allows N -point densities 
to concentrate on lower dimensional subsets as in Fig. 4.1. The condition that a 
probability measure .� ∈ P(RdN) has density . ρ now means that . � has marginals 
equal to the density divided by the particle number, . ρ

N
: 

2 This is not cured by dropping the requirement in (4.7) that . � must have square-integrable 
gradient and requiring mere square-integrability, i.e. replacing .

∧N
i=1 H 1(Rd × Z2;C) by 

.
∧N

i=1 L2(Rd × Z2;C).
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. 

∫

(Rd )j−1×Aj ×(Rd )N−j

d�=
∫

Aj

ρ

N
for all j ∈ {1, . . . , N} and all open sets Aj in Rd .

(4.24) 

We denote the relation given by Eq. (4.24) by .� 
→ ρ. This yields the variational 
principle 

. Minimize
∫

R
dN

Vee(r1, . . . , rN) d�(r1, . . . , rN) over {� ∈ P(RdN) : � 
→ ρ}
(4.25) 

and the following enlarged-constrained-search definition of the SCE functional 

.V SCE
ee [ρ] = min

�∈P(RdN ),� 
→ρ

∫

R
dN

Vee(r1, . . . , rN) d�(r1, . . . , rN). (4.26) 

This alternative definition of .V SCE
ee [ρ] and the underlying enlarged variational 

problem (4.25) were introduced by Buttazzo et al. [14] and Cotar et al. [32], along 
with the insight that minimizers now exist (see Theorem 4.1 (1) below) and (4.26) is 
mathematically an optimal transport problem and can be usefully analyzed with 
methods from optimal transport theory (see Sect. 4.3.6). We call (4.25) the SIL 
variational principle, the acronym SIL standing for strong-interaction limit. 

The notation in (4.26) (“min” instead of “inf”; using the same notation for the 
ensuing density functional even though a priori the right-hand side of (4.26) could 
be lower than that in (4.15) since the minimization is over a larger set) is justified 
because of: 

Theorem 4.1 Let . ρ be any N -particle density in the class .DN (see (4.12)), and let 
.w(r) = |r|−1 be the Coulomb interaction. 

(1) The minimum in (4.26) is attained; that is, there exists a minimizing probability 
measure . �. 

(2) [10, 32, 33] The minimum value in (4.26) is equal to the infimum in (4.15). 

Statement (1) is a special case of general existence theorems in optimal transport 
theory. For a textbook account see [50]. Proofs of such results rely on Prokhorov’s 
theorem from probability theory as well as on approximation and lower semi-
continuity results for functionals of the form .� 
→ ∫

Veed�. 
Statement (2), although plausible, is mathematically much more subtle. It 

rests on the nontrivial result that arbitrary symmetric probability measures . � ∈
P(RdN) with marginal . ρ can be approximated by N -point densities of quantum 
wavefunctions .� ∈ WN with the same marginal. Note that such wavefunctions 
must be antisymmetric and must have a square-integrable gradient; but applying 
standard smoothing techniques from mathematics—such as mollification—to a 
given probability measure with marginal . ρ does not preserve the marginal, nor 
does it yield the N -point density of an antisymmetric function. This result, and the
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ensuing statement (2), was first proved for .N = 2 [32], and later extended to . N = 3
[10] and general N [33] (see also [95] for a similar extension to general N allowing 
mixed states). 

Remark 4.2 (Symmetrization) The minimum value in (4.26) is unchanged, and still 
attained, when the minimization over arbitrary probability measures with marginal 
.ρ/N , .{� ∈ P(RdN) : � 
→ ρ}, is restricted to symmetric probability measures 
with marginal .ρ/N , where a probability measure .� ∈ P(RdN) is said to be 
symmetric if 

. 

∫

A1×...×AN

d� =
∫

Aσ(1)×...×Aσ(N)

d� for all open sets A1, . . . , AN in Rd

and all permutations σ.

This is because whenever . � is a probability measure in .P(RdN) with marginals . ρ, 
Eq. (4.24), then so is its symmetrization .SN� defined by 

.(SN�)(A1 × . . . × AN) = 1

N !
∑

σ

�(Aσ(1) × . . . × Aσ(N)), (4.27) 

the sum being over all permutations of .{1, . . . , N}; and the integral on the r.h.s. 
of (4.26) for . � agrees with that for .SN�, thanks to the permutation symmetry of 
. Vee. 

Next we rigorously justify the asymptotic relations (4.18), (4.19), (4.21) and 
complement them with an asymptotic result on the associated constrained-search 
wavefunctions. 

Theorem 4.3 ([33])) For any N -electron density . ρ in the class .DN (see (4.12)), 
and with .w(r) = |r|−1 being the Coulomb interaction, the asymptotic 
results (4.18), (4.19), (4.21) hold. Moreover if .�λ[ρ] is any minimizer in the 
constrained-search definition of .Fλ[ρ] (see (4.17)), then every limit point3 

. � of 
the sequence of N -point densities .π�λ[ρ] is a minimizer in the enlarged-search 
Definition (4.26) of .V SCE

ee [ρ].

3 By a limit point . � of a sequence .�λ of probability measures we mean a limit point in the sense 
of narrow convergence, that is, convergence of the integrals .

∫
f d�λ to .

∫
f d� for any bounded 

continuous function f . 
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Proof of (4.18), (4.19), and (4.21) The proof, taken from [33], is easy, so we 
include it. We show (4.19), the other statements being equivalent. Fix . ρ. First, 
pick any minimizer .�λ[ρ] in the constrained-search definition of .Fλ[ρ], then 

.
1

λ
Fλ[ρ] = 1

λ

(
T [�λ[ρ]] + λVee[�λ[ρ]]

)
≥ Vee[�λ[ρ]] ≥ V SCE

ee [ρ], (4.28) 

that is, the SCE functional is a lower bound of the left-hand side. To show that it is 
also an asymptotic upper bound for large . λ, we fix any positive number . ε and pick 
a wavefunction .�̃[ρ] in .WN such that .Vee[�̃[ρ]] ≤ V SCE

ee [ρ] + ε. It follows that  

. 
1

λ
Fλ[ρ] ≤ 1

λ

(
T [�̃[ρ]] + λVee[�̃[ρ]]

)
.

Since . ̃� belongs to .WN , its kinetic energy .T [�̃] is finite, and so 

. lim sup
λ→∞

1

λ
Fλ[ρ] ≤ Vee[�̃[ρ]] ≤ V SCE

ee [ρ] + ε.

Since .ε > 0 was arbitrary, 

. lim sup
λ→∞

1

λ
Fλ[ρ] ≤ V SCE

ee [ρ]. (4.29) 

Combining (4.28) and (4.29) yields (4.19). ��
The above simple argument only shows that the asymptotic error in (4.19) is 

.o(1/λ), but does not give its order, which turns out to be .O(1/λ1/2), see Sect. 4.3.5. 

4.3.4 The SCE Ansatz 

The SIL variational principle (4.25) still requires minimization over a high-
dimensional space of N -point probability measures. 

Seidl [122] (see also [127]) proposed the following low-dimensional ansatz: 
we restrict minimization over N -point probability measures to minimization over 
singular probability measures of the special form 

.d�(r1, . . . , rN) = ρ(r1)

N

N∏

n=2

δ
(
rn − fn−1(r1)

)
dr1 . . . drN (4.30)
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where, for any .r1 ∈ Rd , .δ
(
rn − fn−1(r1)

)
denotes the delta function of . rn (alias 

Dirac measure) centered at .fn−1(r1), and .f1, . . . , fN−1 are maps from . Rd to . Rd . 
The singular densities (4.30) are concentrated on the d-dimensional set 

.
0 = {(r1, . . . , rN) ∈ RdN : r2 = f1(r1), . . . , rN = fN(r1)}. (4.31) 

From a physical point of view, such a density describes a state in which the position 
of one of the electrons, say . r1, can be freely chosen according to the density . ρ, but  
this then uniquely fixes the position of all the other electrons through the functions 
.f2, . . . , fN , that is, .r2 = f1(r1) etc. Thus states of form (4.30) are called strictly 
correlated states, or SCE states for short. The . fi are called co-motion functions or 
transport maps. 

The marginal constraint that . � must have marginals . ρ, Eq. (4.24), turns into the 
following constraint on the maps . fn: the . fn must transport the density . ρ to itself, 

.fi�ρ = ρ ∀i ∈ {2, . . . , N} (4.32) 

where, for any measurable map .f : Rp → R
q and any measure . μ on . Rp, the  

push-forward .f�μ is the measure on . Rq defined by 

.(f�μ)(B) = μ(f −1(B)) for all open sets B in Rq . (4.33) 

More explicitly, if .p = q, . μ is absolutely continuous with density . ρ, f is a 
diffeomorphism, and the density of the push-forward .f�μ is denoted by . f�ρ, we  
have 

. (f�ρ)(r′) = |detDf −1(r′)| ρ(
f −1(r′)

)
.

By substituting this formula for the push-forward into (4.32) and changing 
variables .f −1(r′) = r, the constraint (4.32) turns—provided the .fn are 
diffeomorphisms—into the following nonlinear first-order partial differential 
equation: 

. ρ(fi(r)) = ρ(r)
|detDfi(r)| ∀i ∈ {2, . . . , N}.

Plugging the ansatz (4.30) into the SIL variational principle (4.25) and integrat-
ing out the variables .r2, . . . , rN yields the SCE variational principle 

.Minimize
∫

R
d
Vee

(
r1, f1(r1), . . . , fN−1(r1)

) ρ(r1)

N
dr1 (4.34) 

over maps f1, . . . , fN−1 ∈ Tρ,
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with the minimization being over maps in the admissible class 

.Tρ = {f : Rd → R
d : f measurable, f�ρ = ρ}. (4.35) 

Thanks to Theorem 4.4 (1) below, this yields a third construction of the SCE 
functional, 

.V SCE
ee [ρ] = inf

f1,...,fN−1∈Tρ

∫

R
d
Vee

(
r, f1(r), . . . , fN−1(r)

) ρ(r)
N

dr. (4.36) 

In the Coulomb case, (4.4), and denoting .f0(r) = r, we thus have 

.V SCE
ee [ρ] = inf

f1,...,fN−1∈Tρ

∑

0≤i<j≤N−1

∫

R
d

1

|fi(r) − fj (r)|
ρ(r)
N

dr. (4.37) 

Physically, this means that one needs to minimize the mutual Coulomb repulsion of 
the co-motion functions. This construction of the SCE functional was introduced by 
Seidl [122]. A priori it is not clear, but was conjectured by Seidl, that it is equivalent 
to the original construction (4.15). This is now rigorously known (see Corollary 4.6 
below). 

The construction (4.36) should be considered the analogue for interaction of the 
classical Kohn–Sham kinetic energy functional . TS . Just as . TS is determined by N 
low-dimensional functions (the Kohn–Sham spin orbitals . ϕ1, . . . ϕN : R3 × Z2 →
C), .V SCE

ee is determined by .N − 1 low-dimensional maps (the co-motion functions 
or transport maps .f1, . . . , fN−1 : R3 → R

3), which can be easily stored on a 
computer. Moreover—like the Kohn–Sham orbitals—the co-motion functions are 
obtained by just minimizing a 3-dimensional integral. 

The reader is warned, however, that the behavior of the SCE variational principle 
and its relationship to the SIL variational principle is subtle, and open questions 
remain. In particular, it is not known—except in special cases—whether minimizers 
in (4.37) exist. The following results have been rigorously proved. 

Theorem 4.4 Let .ρ : Rd → R be any N -particle density in the class . DN

(see (4.12)), and let .w(r) = |r|−1 be the Coulomb interaction. 

(1) The infimum in (4.36) is equal to the minimum in (4.26). 
(2) For two electrons (.N = 2), and in arbitrary space dimension d, the infimum 

in (4.36) is attained; that is, there exists a minimizing map . f1. Moreover . f1 is 
unique, and the induced probability measure (4.30) is the unique minimizer of 
the SIL variational principle (4.25). 

(3) In one space dimension (.d = 1), and for arbitrary N , the infimum in (4.36) 
is attained; that is, there exist minimizing maps .f1, . . . , fN−1. Moreover the 
symmetrization (see Remark 4.2) of the associated probability measure (4.30) 
is the unique symmetric minimizer of the SIL variational principle (4.25).
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Statement (1) is a consequence, pointed out in [28], of a general theorem of 
Ambrosio [5] and Pratelli [116] in optimal transport theory. For .N = 2 or .d = 1, 
use of the Ambrosio–Pratelli theorem can be avoided since the assertion follows 
from (2) respectively (3). 

The existence of optimal maps in (2) and (3) is subtle and depends on special 
Coulombic features. For non-Coulombic counterexamples see Remark 4.7 below. In 
the Coulomb case, it is an open question whether the infimum in (4.36) is attained 
for general (physically reasonable) densities . ρ when .d > 1 and .N ≥ 3. 

Statement (2) completely justifies Seidl’s SCE ansatz for .N = 2: the SCE 
problem 

. Minimize
∫

R
d

1

|r − f1(r)| over maps f1 ∈ Tρ

has a unique minimizer and the associated SCE state 

.d�(r1, r2) = ρ(r1)

2
δ
(
r2 − f1(r1)

)
dr1dr2 (4.38) 

is the unique minimizer of the SIL problem 

. Minimize
∫

R
d×Rd

1

|r1 − r2|d�(r1, r2) over � 
→ ρ.

This was proved in [32], by modifying the analysis by Gangbo and McCann [55] of  
optimal transport with costs .w(r, r′) which are convex or concave in the displace-
ment .z = r − r′. Note that the Coulomb cost is neither: near any displacement 
.z0 �= 0, it is convex in radial direction and concave in all perpendicular directions. 
A simpler proof using Kantorovich duality (see Sect. 4.3.7) was suggested in [14], 
and made rigorous in [42]. The SCE map is given by 

.f1(r) = r + ∇u(r)
|∇u(r)|3/2

, (4.39) 

for some function .u : Rd → R (Kantorovich potential). The notion of Kantorovich 
potential will be explained in Sect. 4.3.7. Equation (4.39) follows by solving 
Eq. (4.59) for . f1. 

Statement (3), together with an explicit construction of the optimal maps given 
in Sect. 4.3.11, was suggested in the original paper by Seidl [122] on grounds of 
physical arguments, and was rigorously proved in [27] with the help of cyclical 
monotonicity methods from optimal transport theory. See Sect. 4.3.11 for more 
information. 

The uniqueness statements in (2) and (3) are somewhat surprising: the optimal N -
point densities arising from Levy–Lieb constrained search in the strongly interacting
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r1r1 

f (r1) 

r2 

ρ 

Fig. 4.2 SCE state of a two-electron system with homogeneous density in a one-dimensional 
domain. By Theorems 4.3 and 4.4, this state is an asymptotically exact approximation to the 
true quantum ground state at low density. Left: optimal co-motion function or transport map f . 
Right: position of the two electrons in the one-dimensional domain. The position of the second 
electron, . r2, is determined by that of the first electron, . r1, through the equation .r2 = f (r1), with 
the optimal f keeping the electrons at a constant distance, of half the domain size. The position of 
the first electron varies over the whole domain according to the density . ρ (see Eq. (4.38)). As the 
first electron (depicted in blue) passes through the mid-point, the position of the second electron 
(depicted in red) jumps from the right end to the left end, causing a discontinuity of f 

limit are always unique when either .N = 2 or .d = 1! No analogue holds off the 
strongly interacting limit. 

Example 4.5 Consider a two-electron system with uniform density in a one-
dimensional interval .[0, L]. The unique minimizer .f1 = f of the SCE variational 
principle (4.34) can be shown (see Sect. 4.3.11) to be  

.f (r1) =
{

r1 + L
2 if r1 ≤ L

2

r1 − L
2 if r1 > L

2 .
(4.40) 

See Fig. 4.2. 

By combining Theorems 4.4 and 4.1 we obtain: 

Corollary 4.6 Let .ρ : Rd → R be any N -particle density in the class . DN

(see (4.12)), and let .w(r) = |r|−1 be the Coulomb interaction. Then the infimum 
in (4.36) is equal to that in (4.15). 

Proof This follows from the fact that both quantities are equal to the minimum 
value of the SIL variational principle (4.25), by Theorem 4.1 (2) respectively 
Theorem 4.4 (1). ��

We remark that no proof is known which bypasses the SIL variational principle, 
even though the corollary was conjectured before the latter was introduced.



4 The Strong-Interaction Limit of Density Functional Theory 199

We close this introductory section on the SCE ansatz with some remarks. 

Remark 4.7 (Nonattainment) For simple non-Coulombic counterexamples to 
attainment of the infimum in (4.36) for .N = 3 even in one space dimension, 
see [49, 59]. For instance, one can take the uniform density in the interval . [0, 3]
and the interaction potential .w(r) = r4/4 − r3/3 [49]. Earlier more intricate 
counterexamples can be found in [107]. Such a nonattainment has the undesirable 
consequence that numerically computed optimal maps will necessarily exhibit 
wilder and wilder oscillations as the mesh is refined or the basis set approaches 
completeness, and fail to converge in any pointwise sense to actual optimal maps. 

Remark 4.8 (Existence of Non-SCE Minimizers) For a Coulombic example for 
.N = 3 in three space dimensions showing that the SIL variational principle can 
possess minimizers which are not of SCE form, see [113]. This example exhibits 
nonuniqueness and it is not known whether it also admits minimizers which are of 
SCE form. 

Remark 4.9 (Alternative Formulations of the SCE Ansatz) Denoting .f0(r) .= r, one 
can write the SCE ansatz (4.30) in the following form in which all coordinates 
.r1, . . . , rN appear on an equal footing: 

.d�(r1, . . . , rN) =
∫

ρ(r)
N

N∏

n=1

δ
(
rn − fn−1(r)

)
dr. (4.41) 

Also, one can work with the symmetrized form of this ansatz, 

.d�(r1, . . . , rN) = 1

N !
∑

σ

∫
ρ(r)
N

N∏

n=1

δ
(
rn − fσ(n−1)(r)

)
dr (4.42) 

(where . σ runs over the permutations of the SCE map indices .0, . . . , N − 1); 
the symmetrization doesn’t change the energy .

∫
Vee d�, and the symmetrized 

form (4.42) minimizes the SIL problem (4.26) if and only if the unsymmetrized 
form (4.41) does, as was explained in Remark 4.2. 

Remark 4.10 (Nonsmoothness of Optimal Maps) The reader might wonder why, in 
SCE theory, no differentiability and not even continuity is imposed on the competing 
maps (the maps in the admissible class (4.35) are merely required to be measurable). 
This is because optimal maps, when they exist, are typically discontinuous. This 
important effect can be understood intuitively from simple examples as in Fig. 4.2. 
As the first electron passes through the midpoint of the domain, the position of the 
second electron jumps from the right end of the domain to the left end, yielding the 
discontinuous map depicted in the Figure. For a radial density in three dimensions 
(.d = 3), an analogous discontinuity occurs in that spheres near zero are mapped 
to spheres near infinity [32]. For general densities and general N , the presence 
of discontinuities across unknown surfaces makes Eq. (4.36) very challenging for 
numerical computations.
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4.3.5 The Next Leading Term 

So far we have treated the limit of the Levy–Lieb functional at infinite coupling 
strength . λ (or, equivalently, at extreme low density). One could ask how this limit is 
approached, or, in other words, what is the next leading term in Eqs. (4.18)–(4.19). 

The strategy employed in [68] to compute this next leading term relies on the 
assumption that the minimizer in (4.25) is of the SCE or Monge type, see the 
detailed discussion in the previous Sect. 4.3.4. Under this assumption, as shown in 
Sect. 4.3.8, the classical potential energy 

.Epot(r1, . . . , rN) = Vee(r1, . . . , rN) −
N∑

i=1

vSCE(ri ), (4.43) 

with .vSCE(r) defined by Eqs. (4.59) and (4.64), attains its minimum on the manifold 
. 
0 parametrized by the co-motion functions, 

.
0 = {(r1, . . . , rN) ∈ RdN : r1 = r, r2 = f2(r), . . . , rN = fN(r)}. (4.44) 

When . λ in Eq. (4.17) is very large but finite, we can expect that the support of the 
minimizer in Eq. (4.17) be strongly localized around . 
0, as illustrated by Fig. 4.1 
in Sect. 4.3.3. We can then expand .Epot around its minimum through second order. 
The corresponding Hessian matrix .H(r) evaluated on . 
0, for any fixed . r, will have 
d zero eigenvalues (along the manifold . 
0) and .dN − d positive eigenvalues. By 
using curvilinear coordinates along the manifold . 
0 and orthogonal to it, the sought 
next leading term is determined by adding the kinetic energy to the second-order 
expansion of .Epot, which corresponds to the Hamiltonian of zero-point oscillations 
in the space orthogonal to .
0 [68]. The final result is that Eqs. (4.18)–(4.19) are 
extended to [66, 68] 

.FLL[ργ ] ∼
γ→0

γ V SCE
ee [ρ] + γ 3/2F ZPE[ρ]. (4.45) 

Fλ ∼
λ→∞ 

λV SCE 
ee [ρ] + √

λ F ZPE[ρ], (4.46) 

where 

.F ZPE[ρ] = 1

2

∫

R
d

ρ(r)
N

Tr
(√
H(r)

)
. (4.47) 

In [71] this term has been computed explicitly for .N = 2 electrons in 1d and it has 
been compared with accurate numerical calculations for the Levy-Lieb functional at 
very large . λ, finding excellent agreement. 

The intuition that the next term of the Levy–Lieb functional at infinite cou-
pling strength . λ should be given by zero-point oscillations around the manifold
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parametrized by the co-motion functions appeared for the first time in Seidl’s 
seminal work [122]. He also carried out explicit calculations in 3D for the 
spherically-symmetric case with .N = 2 electrons, using the co-motion function 
introduced in Sect. 4.3.12. This idea was extended to the general many-electron case 
in [68], where it was also found that Seidl’s original calculation had a wrong factor 
2. Very recently, a rigorous proof of Eqs. (4.45)–(4.47) for the many-electron 1d 
case has been provided by Colombo et al. [29]. 

4.3.5.1 The Fermionic Statistics 

Equations (4.45)–(4.47) are the first-order correction due to kinetic energy in the 
large-. λ (or .h̄ → 0) limit of the Levy–Lieb functional. This correction is still 
independent of the particle statistics. A natural question to ask is then at which 
order will the fermionic antisymmetry enter. 

In Refs. [67, 68] it has been conjectured that the particle statistics enters in the 
.λ → ∞ limit at orders .∼ e−√

λ. The physical intuition behind this idea is simply 
that the effect on the energy of antisymmetrization vanishes as the overlap between 
gaussians centered at each set of strictly-correlated positions (each . r value in . 
0). 
The scaling .

√
λ of such gaussians comes from the zero-point hamiltonian. This 

conjecture has been confirmed numerically [71] for the case of .N = 2 electrons in 
1D, again by comparison with accurate numerical calculations of the exact Levy-
Lieb functional at large . λ. 

4.3.6 The Strongly Interacting Limit of DFT from the Point 
of View of Optimal Transport 

We now introduce a fruitful interpretation of the strongly interacting limit of DFT 
as “optimal transport with Coulomb cost”. 

Optimal transport theory (see [50, 117, 119, 136] for textbook accounts) is con-
cerned with the following two problems, introduced in special cases in fundamental 
work by Kantorovich [80] respectively Monge [108]: 

(a) Kantorovich optimal transport problem: For given probability measures 
.μ1, . . . , μN defined on closed subsets .X1, . . . , XN of . Rd , find a joint 
probability measure . � on the product space . X = X1 × . . . × XN ⊆ RNd

which minimizes a cost functional 

.C[�] =
∫

X

c(r1, . . . , rN) d�(r1, . . . , rN)
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subject to the marginal constraints 

. 

∫

X1×...×Xi−1×Ai×Xi+1×...×XN

d� =
∫

Ai

dμi for all measurable sets Ai ⊆ Xi

and all i ∈ {1, . . . , N}.

Here .c : X1 × . . . × XN → R ∪ {+∞} is some given cost function, and the 
validity of the above constraint is denoted .� 
→ μ1, . . . , μN . 

(b) Monge optimal transport problem: For given probability measures . μ1, . . . , μN

defined on measurable subsets .X1, . . . , XN of .Rd of positive volume which 
possess integrable densities .p1, . . . , pN (i.e. .pi ∈ L1(Xi)), and a cost function 
c as above, find measurable maps .f1, . . . , fN−1 with .fi : X1 → Xi+1 which 
minimize 

. I [f1, . . . , fN−1] =
∫

X1

c
(
r1, f1(r1), . . . , fN−1(rN)

)
dμ1

subject to the marginal constraints 

. fi�p1 = pi+1 for i ∈ {1, . . . , N − 1}.

This corresponds to making the ansatz 

. d�(r1, . . . , rN) = dμ1(r1)δ
(
r2 − f1(r1)

) · · · δ(rN − fN−1(r1)
)
dr2 . . . drN

(4.48) 

or equivalently—using the notion of push-forward introduced in (4.33)— 

.� = (id, f1, . . . , fN)�μ1 (4.49) 

in the Kantorovich problem, where . id denotes the identity map .id(r1) = r1. 

Example 4.11 (N Equal Marginals, Coulomb Cost) If we take 

. X1 = · · · = XN = Rd , μ1 = · · · = μN = ρ

N
, c(r1, . . . , rN) =

∑

1≤i<j≤N

1

|ri − rj |

the Kantorovich optimal transport problem is precisely the SIL variational prob-
lem, (4.25), and the Monge optimal transport problem is precisely the SCE 
variational problem, (4.34). 

Thus the strongly interacting limit of DFT can be viewed as optimal transport with 
Coulomb cost. This viewpoint, introduced by Buttazzo et al. [14] and Cotar et al. 
[32], opened the door to much of the current understanding of the strong-interaction 
limit of DFT.
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Example 4.12 (Two Unequal Marginals, Positive Power Cost) The prototype prob-
lem of classical optimal transport theory going back to [80, 108] is to instead take 

. N = 2, X1 = X2 = Rd , c(r1, r2) = |r1 − r2|p, p ≥ 1.

That is, one considers: 

– only two marginals; 
– unequal instead of equal marginals; 
– a positive instead of a negative power of the Euclidean distance as cost. 

Denoting .μ1 = μ, .μ2 = ν, .f1 = T , .r1 = x, .r2 = y, the Kantorovich problem then 
becomes 

. Minimize C[�] =
∫

R
d×Rd

|x − y|pd�

(x, y) over � ∈ P(R2d) subject to � 
→ μ, ν (4.50) 

and the Monge problem becomes 

. Minimize I [T ] =
∫

R
d
|x − T (x)|pdμ(x) over measurable maps T : Rd → R

d

subject to T�μ = ν. (4.51) 

The analogue of the SCE functional is the optimal cost as a functional of the two 
prescribed marginals, 

. Copt[μ, ν] = min{C[�] : � 
→ μ, ν} = inf{I [T ] : T�μ = ν}.

Its p-th root, .Wp(μ, ν) = (Copt[μ, ν])1/p, is the celebrated p-Wasserstein distance, 
which is a metric on the space of probability measures. 

Thus the SCE functional can be thought of as the Coulomb analogue of the 
Wasserstein distance. 

We remark that the motivation of Monge and Kantorovich for considering 
Example 4.12 came from civil engineering, respectively economics, and explains 
the name optimal transport: Monge thought of moving a given pile of sand on a 
construction site into a given hole in a way that minimizes the overall distance of 
transport, with .T (x) describing the target position of sand originally located at x 
and with pile and hole modelled, respectively, by . μ and . ν. Kantorovich thought 
of transporting some economic good, say steel, from producers (steel mines) to 
consumers (factories), at minimal transportation cost; .�(x, y) then describes the



204 G. Friesecke et al.

density of goods transported from location x to location y, and is called a transport 
plan. In the latter context it is natural not to make the Monge ansatz 

. d�(x, y) = dμ(x)δ
(
y − T (x)

)
dy

but instead allow one producer located at x to supply several consumers located at 
different positions y, i.e. consider the general problem (4.50). 

The general question for which costs and marginals the Monge and Kantorovich 
problems are equivalent, i.e. the Kantorovich problem admits minimizers of Monge 
form, is not well understood. A sufficient condition [119] for .N = 2 (and, say, 
compact convex sets .X1 and .X2 and continuously differentiable costs c) is that 
the marginal measure .μ1 is absolutely continuous and c satisfies the so-called 
twist condition that the map .r2 
→ ∇r1c(r1, r2) be injective for every . r1. For  
.N > 2, generalized twist conditions have been studied by Pass [111, 114, 115]; 
unfortunately these are not satisfied for the Coulomb cost. 

4.3.7 Dual Construction of the SCE Functional 

We now introduce a fourth—dual—construction of the SCE functional. 
A cornerstone principle of optimal transport theory, Kantorovich duality, says 

that the minimum of a given Kantorovich optimal transport problem (see Sect. 4.3.6) 
equals the supremum of an associated explicit dual problem. The general form of 
the dual is recalled in Appendix 4.6. For the SIL problem (4.25), the dual problem 
is the following (see Appendix 4.6 for a quick derivation from general OT theory): 
maximize the functional 

.J [u] =
N∑

i=1

∫

R
d
u(r) ρ(r) dr (4.52) 

over potentials .u : Rd → R which must satisfy the pointwise constraint 

.

N∑

i=1

u(ri ) ≤ Vee(r1, . . . , rN) ∀ (r1, . . . , rN) ∈ RdN . (4.53) 

Maximization is over the admissible class 

.A = {u : Rd → R | u bounded and measurable, u satisfies (4.53)}. (4.54)
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This yields the following alternative definition of the SCE functional: 

.V SCE
ee [ρ] = sup

u∈A

∫

R
d

u(r) ρ(r) dr. (4.55) 

This construction is due to Buttazzo, DePascale, and Gori-Giorgi [14]. Note that 
the optimization here is not over N -point densities, but over (suitable) external 
potentials u. Optimizers are called Kantorovich potentials. Heuristically, they can 
be thought of as Lagrange multipliers associated with the marginal constraints in the 
original problem (4.25). This is explained in our discussion of optimality conditions 
in Sect. 4.3.8. 

It can be rigorously shown that the new construction yields, again, the SCE 
functional, and that optimal potentials exist: 

Theorem 4.13 Let .ρ : Rd → R be any N -particle density in the class . DN

(see (4.12)), and let .w(r) = |r|−1 be the Coulomb interaction. Then: 

(1) [14] The supremum in (4.55) is equal to the minimum in (4.26). 
(2) [14, 38] The supremum in (4.55) is attained; that is, there exists a maximizing 

potential u in the class (4.54). 
(3) [13, 42] If, in addition, .ρ > 0 everywhere, there exists a maximizing potential 

which is in addition Lipschitz continuous. 

Statement (1) follows directly from the general Kantorovich duality theorem of 
OT theory; see Appendix 4.6. The question of existence and regularity of optimal 
potentials is more delicate. Note that the Coulomb potential .Vee which upper-bounds 
.u(r1) + · · · + u(rN) tends to plus infinity as the distance .ri − rj between any two 
position coordinates goes to zero; so one might a priori think that u’s are favourable 
which also tend to plus infinity at certain places. But statement (2) in the above 
theorem says that this does not happen; the existence proof of bounded optimal 
potentials is due to [14] for .N = 2 and to [38] for general N . 

Quantum Analogue We remark that the dual construction of the SCE functional 
in Eq. (4.55) admits a quantum analogue. In [97], Lieb proposed an extension of the 
Levy–Lieb functional (4.11) to mixed states, i.e. .FL : DN → R, 

.FL[ρ] = (4.56) 

min 

⎧ 
⎨ 

⎩Tr 

⎛ 

⎝−1 

2 

N∑

j=1

�rj + Vee(r1, . . . , rN) 

⎞ 

⎠ � : �=�∗ � 0, Tr(�)=1, � 
→ ρ 

⎫ 
⎬ 

⎭ , 

where . � is an operator acting on the fermionic Hilbert space and, similarly to (4.9), 
.� 
→ ρ denotes the relation . ρ(r) = N

∫
R

dN �(r, r2, . . . , rN ; r, r2, . . . , rN) dr2 . . .

drN . In [91], M. Levy introduced a similar functional requiring in addition that 
.� = |ψ〉〈ψ | be a rank-one operator. An advantage of the Lieb functional . FL is that
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it is convex. Ignoring issues of rigor, (4.56) admits a dual formulation 

.FL[ρ] = sup

⎧
⎨

⎩

∫

R
3
u(r)ρ(r) dr :

N∑

i=1

u(ri ) ≤ −1

2

N∑

j=1

�rj
+ Vee

⎫
⎬

⎭ , (4.57) 

with the above inequality understood in the sense of self-adjoint operators. For a 
rigorous discussion of Eq. (4.57) see Chap. 3 by Lewin et al. This equation is the 
quantum analogue (for mixed states) of the dual construction of the SCE functional. 
Note that because the right-hand side of the constraint on u now contains an 
additional positive term, the value of the supremum will be higher than in (4.55), as  
it should be. 

4.3.8 Optimality Conditions 

With the help of Kantorovich duality one obtains very interesting necessary condi-
tions for solutions to the SIL variational principle (4.25). In particular, for optimizers 
of SCE (alias Monge) form one can express the gradient of the Kantorovich potential 
u in terms of the co-motion functions (alias transport maps). 

We follow the rigorous presentation for general OT problems in [50], but 
specialize throughout to the SIL problem. For the benefit of less mathematically 
minded readers, we also include a heuristic derivation at the end of this section. 

Theorem 4.14 (Optimality Conditions [50]) Let .ρ : Rd → R be any N -particle 
density in the class .DN (see (4.12)). Let .Vee : RdN → R∪{+∞} be any interaction 
potential which is symmetric, bounded from below, lower semi-continuous, and has 
the property that the minimum in (4.26) is finite. Suppose . � is a solution to the SIL 
problem (4.26), and u is a solution to the dual problem, i.e. a maximizer of J in the 
class . A. 

(1) . � is zero outside the set 

. M = {(r1, . . . , rN) ∈ RdN : Vee(r1, . . . , rN) −
N∑

i=1

u(ri ) = min}.

(2) . � is an unconstrained minimizer (i.e., a minimizer on .P(RdN)) of the modified 
functional 

.L[�] =
∫

R
dN

(
Vee(r1, . . . , rN) −

N∑

i=1

u(ri )
)

d�(r1, . . . , rN).
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(3) At any point .(r1, . . . , rN) in . M where the function in (1) is differentiable with 
respect to . r1, 

.∇u(r1) = ∇r1Vee(r1, . . . , rN). (4.58) 

In particular, if . � is of SCE form, (4.30), and .Vee(r1, . . . , rN) is the Coulomb 
interaction .

∑
1≤i<j≤N

1
|ri−rj | , 

. ∇u(r) = −
N−1∑

i=1

r − fi(r)
|r − fi(r)|3

at any point r where u is differentiable and ρ(r) > 0. (4.59) 

The physical and mathematical meaning of these results is as follows. 
(1) says that the classical potential energy 

. Epot(r1, . . . , rN) = Vee(r1, . . . , rN) −
∑

i

u(ri )

is minimal on the manifold of configurations which occur with nonzero probability 
under the optimal plan . �. In particular, when . � is of the SCE or Monge type, 
the classical potential energy is minimal on the manifold (4.31) parametrized by 
the co-motion functions. Besides being interesting in its own right, this underlies 
the derivation of the next leading term of the Levy–Lieb functional outlined in 
Sect. 4.3.5. 

(3) says that the Kantorovich potential u is an effective one-body potential 
emulating the many-body system, in the following sense: its gradient at the point 
r is precisely the classical repulsive force exerted on an electron at . r by the other 
electrons at positions .fi(r). Equation (4.59) is called the force equation. 

(2) can be viewed as an infinite-dimensional Lagrange multiplier rule, with any 
Kantorovich potential (i.e. any optimizer of the dual variational principle (4.55)) 
playing the role of a Lagrange multiplier associated with the constraint .� 
→ ρ. 

We remark that results of the above form have a long history in OT theory; for 
the two-marginal problem with interaction potential .|r1 −r2| respectively .|r1 −r2|2, 
(1) goes back to Kantorovich himself [80], while the differential version (3) and its 
usefulness were first realized by Knott and Smith [83]. 

Proof The following proof, taken from [50], is simple and illuminating, so we 
include it. By Kantorovich duality (in the form of Theorem 4.13 (1)), 

.0 =
∫

R
dN

Vee d� −
N∑

i=1

∫

R
d
u(ri )

ρ(ri )

N
dri .
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Since . � has equal marginals . ρ
N

, .
∫
R

d u(ri )
ρ(ri )
N

dri = ∫
R

dN u(ri ) d�(r1, . . . , rN), 
and so 

. 0 =
∫

R
dN

(
Vee(r1, . . . , rN) −

∑

i

u(ri )
)

d�(r1, . . . , rN).

But since u satisfies the constraint (4.149) at every point in .RdN , the integrand is 
nonnegative. So the minimum value of the integrand must be zero and attained, 
and . � must vanish wherever the integrand is positive. This establishes (1) and 
(2). The elementary calculus fact that the gradient of a differentiable function 
vanishes at minimum points now yields (4.58). Finally, (4.59) follows since the 
point .

(
r1, f1(r1), . . . , fN−1(r1)

)
belongs to . M whenever the density . ρ is positive 

at . r1. ��
We complete this section with a more heuristic derivation of the optimality 

conditions. 

Heuristic derivation of Theorem 4.14 Let us re-write the SIL variational princi-
ple (4.25) in the form 

.Minimize C[�] =
∫

R
dN

Vee d� subject to the constraints (4.60) 

G(r1)[�] =  ρ(r1)∀r1 ∈ Rd , 

where .G(r1)[�] is the functional which assigns to an N -point probability measure 
. � the value of its single-particle density at the point . r1, and where the minimization 
is over symmetric probability measures (see Remark 4.2). Let us now postulate the 
existence of a family of Lagrange multipliers .(λ(r1))r1∈Rd , one for each .G(r1), such 

that minimizers of . C subject to the constraints .G(r1)[�] = ρ(r1) are unconstrained 
minimizers of the Lagrangian 

. L[�] = C[�] −
∫

R
d
λ(r1)G(r1)[�]dr1.

But since .G(r1)[�] is the one-body density of . �, and . � is symmetric, 

. L[�] =
∫

R
dN

[
Vee[r1, . . . , rN ] − λ(r1)N

]
d�(r1, . . . ., rN)

=
∫

RdN

[
Vee(r1, . . . , rN) −

N∑

i=1

λ(ri )
]
d�(r1, . . . , rN), (4.61) 

so the Lagrangian coincides with the functional in (2) with .λ = u. It is clear 
that minimizers of the Lagrangian must be concentrated on the set of pointwise
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minimizers of the integrand, yielding (1). Statement (3) now follows as in the 
rigorous proof. 

The above argumentation obtains the Kantorovich potential u quickly but non-
rigorously as a Lagrange multiplier. In fact, with such a heuristic construction of u, 
statements (1) and (3) were already derived in [127] before the discovery of the SCE 
theory/optimal transport connection. 

But readers are put on notice that there is no such thing as a general and rigorous 
Lagrange multiplier rule which would guarantee the existence of Lagrange mul-
tipliers for infinite-dimensional non-smooth problems like Levy–Lieb constrained 
search or its strongly interacting limit (4.25). In DFT (in its original form with both 
kinetic energy and electron repulsion present), the existence problem for Lagrange 
multipliers—i.e., the existence of one-body potentials which, when added to the 
Hamiltonian .T + Vee, reduce a constrained search to an unconstrained search— 
is known as the v-representability problem. This is a longstanding open problem, 
see e.g. [76, 84, 90, 97, 133]. For variants of the problem at positive temperature 
respectively quantum lattices see [19, 20]; v-representability for a regularization of 
the exact Levy–Lieb functional is discussed in Chap. 5 by Kvaal. 

4.3.9 Solution of the Purely-Interacting v-Representability 
Problem 

We now show that in the strongly interacting limit the v-representability problem, 
alias the problem of existence of Lagrange multipliers for density functionals 
defined by constrained search, can be completely solved. As we will see, this fact 
follows by combining known results. We assume in this section that . w(r) = |r|−1

is the Coulomb interaction. 
Recall that a density .ρ : Rd → R is called

• N -representable if it comes from a wave function .� ∈WN (i.e. .� 
→ ρ)
• v-representable if it comes from a minimizer of .〈�|T + Vee + ∑

i v(ri )|�〉 on 
.WN for some potential .v : Rd → R

• non-interacting v-representable if it comes from a minimizer of . 〈�|T +∑
i v(ri )|�〉 on .WN for some potential .v : Rd → R

• purely-interacting v-representable if it comes from a minimizer of . 
∫
R

dN

(
Vee +∑

i v(ri )
)
d� on .P(RdN) for some potential .v : Rd → R. 

Theorem 4.15 (N -Representability Implies Purely-Interacting v-Represent
-ability) Any N -representable . ρ, i.e. any . ρ belonging to the class .DN (see (4.12)), 
is purely-interacting v-representable by some bounded measurable potential 
.v : Rd → R. Explicitly, the following choice will do: 

.v = −u (4.62)
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where u is any bounded Kantorovich potential for . ρ (see Theorem 4.13 for existence 
of the latter). 

This result is quite remarkable, given that—to our knowledge—not much is 
known on the rigorous level off the strongly interacting limit. 

Proof of Theorem 4.15 By Theorem 4.13 (2), there exists a bounded maximizer u 
of the dual functional, i.e. an associated Kantorovich potential. Let .v = −u. By The-
orem 4.1 (1), there exists a minimizer .�[ρ] of the SIL variational problem (4.25). 
By Theorem 4.14 (2), this .�[ρ] is a minimizer of .

∫
RdN

(
Vee + ∑

i v(ri )
)
d� on 

.P(RdN). Since by construction . � has density . ρ, it follows that  v represents . ρ. ��
If in addition .ρ > 0 everywhere, the above proof together with Theorem 4.13 

(3) shows that . ρ is even purely-interacting v-representable by some Lipschitz 
continuous potential. 

4.3.10 Functional Derivative and SCE Potential 

It is not difficult to deduce from Theorem 4.15 that when the density . ρ is sufficiently 
nice (say, continuous and everywhere positive) and the Kantorovich potential . u[ρ]
(i.e. the maximizer of the dual problem (4.55)) is unique, the SCE functional is 
functionally differentiable at . ρ with functional derivative 

.
δV SCE

ee [ρ]
δρ

[ρ] = u[ρ] + const (4.63) 

where .const is an arbitrary additive constant. Here for any functional F on . DN

the functional derivative . δF
δρ

[ρ] at some density . ρ (if it exists) is defined by the 
requirement 

. 
d

dt
F [ρ + t η]

∣∣∣
t=0

=
∫

R
d

δF

δρ
[ρ](r) η(r) dr

for all smooth mass-preserving localized perturbations .η : Rd → R (mathemat-
ically: .η ∈ C∞

0 (Rd), .
∫

η = 0), and is unique up to an additive constant. For an 
informal derivation of Eq. (4.63) see e.g. [22], and for a rigorous proof under suitable 
assumptions see [41]. 

As for any Hartree-exchange-correlation functional, the Hartree-exchange-
correlation potential associated to the SCE functional is the functional derivative
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with additive constant chosen so that the potential vanishes at infinity, in our case 

. vSCE[ρ](r) = u[ρ](r) + C[ρ], C[ρ] a constant that ensures

lim|r|→∞ vSCE[ρ](r) = 0. (4.64) 

This functional derivative is called the SCE potential. 
To summarize: the SCE potential for the strongly correlated limit of DFT agrees 

up to a shift with the Kantorovich potential from optimal transport theory. 
Assume now that the density is everywhere positive, that the ground state 

of (4.25) is an SCE state, and that 

.the values f1(r), . . . , fN−1(r) stay in a bounded region as |r| → ∞. (4.65) 

It then follows from (4.59) that the SCE potential has the correct asymptotic 
behavior 

.vSCE[ρ](r) ∼|r|→∞
N − 1

|r| . (4.66) 

By contrast, Hartree-exchange-correlation potentials for all semilocal functionals 
(LDA, GGAs) are well known to have the wrong asymptotics on physical (i.e. 
exponentially decaying) densities, 

.vsemiloc
Hxc [ρ](r) ∼|r|→∞

N

|r| . (4.67) 

Open Problem Rigorously justify (4.65), and hence (4.66), for general densities . ρ. 
Note that for .N = 2 and radial densities, or any N and arbitrary densities in one 
dimension, assumption (4.65) follows from the explicit formulae for the . fi in [32] 
respectively [27] (Fig. 4.3).4 

Example 4.16 Let .N = 2, and let .ρ(r) = 2/π(1 + r2) be the one-dimensional 
Lorenzian density, normalized so that .

∫
ρ = 2. The co-motion function . f1 = f

can be computed explicitly and is given by .f (r) = −1/r , see Example 4.18 in 
Sect. 4.3.11. The SCE potential must satisfy the differential equation (4.59) which 
in our case reads 

. v′
SCE(r) = sgn(r)

[
r − f (r)

]2 = sgn(r)
r2

(r2 + 1)2 .

The boundary condition .vSCE(r) → 0 for .r → ∞ (Eq. (4.64)) yields the solution 

.vSCE(r) = sgn(r)

2

[
arctan r − r

r2 + 1

]
− π

4
.

4 Note added in proof: this problem has recently been solved in https://arxiv.org/abs/2210.07830. 

https://arxiv.org/abs/2210.07830
https://arxiv.org/abs/2210.07830
https://arxiv.org/abs/2210.07830
https://arxiv.org/abs/2210.07830
https://arxiv.org/abs/2210.07830
https://arxiv.org/abs/2210.07830
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Fig. 4.3 SCE potentials .vSCE(r) corresponding to the (radially symmetric) densities of Neon 
(.N = 10), Carbon (. N = 6) and Boron .(N = 5), Fig. 9 in [127]. Data obtained by the following 
steps: (i) compute the density .ρ(r) by an accurate full CI or quantum Monte Carlo computation; 
(ii) compute the SGS maps corresponding to . ρ as described in Section 4.3.12 below; (iii) obtain 
the corresponding SCE potentials .vSCE via Eqs. (4.59) and (4.64) 

4.3.11 Strictly Correlated Electrons in One Dimension 

In one dimension the strong interaction limit (Eq. (4.25)) can be solved exactly. The 
minimizing probability measure is given by an SCE state (4.30) with explicit co-
motion functions alias transport maps. The minimizer was found by Seidl himself 
in the original paper [122], on grounds of physical intuition. A proof of its optimality 
was found much later by Colombo, De Pascale and Di Marino [27]. 

Seidl’s Construction For a given integrable density .ρ : R → R with .ρ ≥ 0 and 
.
∫

ρ = N , begin by choosing .f1 : R → R so that the amount of density between 
r and .f1(r) is 1. Now choose . f2 so that the amount of density between .f1(r) and 
.f2(r) is again 1, and so on, i.e., denoting .f0(r) = r , 

.

∫ fi+1(r)

fi (r)

ρ(r ′) dr ′ = 1 (4.68) 

for all .i = 0, . . . , N − 1. For Eq. (4.68) to possess a solution .fi+1(r) in . R ∪ {+∞}
we must have .

∫ ∞
fi(r)

ρ ≥ 1; otherwise one needs to integrate first up to .+∞ and then 
onwards from .−∞ so as to obtain a total value of 1, 

.

∫ ∞

fi(r)

ρ(r ′) dr ′ +
∫ fi+1(r)

−∞
ρ(r ′) dr ′ = 1. (4.69) 

Physically this means that, given that the first electron is at some position .x1 = r , 
all the other electrons at .x2 = f1(r), . . . , xN = fN−1(r) are separated by an equal
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ρ 

area 
= 1  

fi+1(r)fi(r)rr 

fi(r) 

Fig. 4.4 SCE state of N electrons in one dimension. Right: Electron positions. Given that the first 
electron (depicted in blue) is at r , the positions of the other electrons are completely determined 
by the requirement that neighboring electrons are separated by an amount of density of 1 (blue 
area). The co-motion functions or transport maps . fi (.i = 1, . . . , N − 1) of SCE theory are defined 
as the positions of the other electrons as a function of the first position r . The latter is distributed 
according to the given single-particle density . ρ. Left: Graphs of the maps . fi , with .f0(r) = r also 
shown. The figure corresponds to the Lorenzian density (Example 4.18) and . N = 5

amount of density between nearest neighbors. See Fig. 4.4, right panel. As always 
for SCE states, the first electron position is distributed according to the given density 
. ρ. 

The above construction can be expressed concisely in terms of the cumulative 
distribution function 

.Gρ(r) =
∫ r

−∞
ρ(r ′)
N

dr ′ (4.70) 

and its generalized inverse 

.G−1
ρ (y) = inf{r ∈ R : Gρ(r) > y}. (4.71) 

(When . ρ is continuous and everywhere positive, .G−1
ρ is just the usual inverse 

function; the above definition has the virtue that it works for any nonnegative 
integrable . ρ with integral N .) Equations (4.68) and (4.69) now take the form 
.Gρ(fi+1(r))−Gρ(fi(r)) = 1/N respectively .1−Gρ(fi(r))+Gρ(fi+1(r)) = 1/N , 
so by solving for .fi+1 in terms of . fi and using . f0(r) = r

.fi(r) =
{

G−1
ρ

(
Gρ(r) + i

N

)
if Gρ(r) � N−i

N

G−1
ρ

(
Gρ(r) + i

N
− 1

)
otherwise,

(4.72) 

for .i ∈ {1, . . . , N − 1}.
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Optimality This construction is indeed optimal: 

Theorem 4.17 Let .w(r) = |r|−1. For any nonnegative integrable density . ρ :
R → R with .

∫
ρ = N , the SCE state (4.30) with .f1, . . . , fN−1 given by the Seidl 

construction (4.72) is a minimizer of the SIL problem 

. Minimize
∫

R
N

Vee(r1, . . . , rN ) d�(r1, . . . , rN ) over {� ∈ P(RN) : � 
→ ρ}.

Moreover when . ρ is everywhere positive, this minimizer is unique for .N = 2, and 
its symmetrization (see Remark 4.2) is the unique symmetric minimizer for arbitrary 
N . 

This theorem is due to [32] for .N = 2 and to [27] for arbitrary N . Despite the 
intuitive nature of the optimizer, the proof is not elementary. It is based on a careful 
analysis of the structure of .Vee-cyclically monotone sets in . RN , and strongly relies 
on both optimal transport theory and the ordering properties of the real line. Note 
that uniqueness cannot hold for .N ≥ 3 unless symmetry is required, as re-labelling 
the . fi then yields another solution. This is purely a mathematical, not a physical 
effect since solutions to the SIL problem arising as low-density limits of N -point 
densities of quantum wavefunctions (as described by Theorem 4.3) are always 
symmetric, corresponding to the symmetrization of the state (4.30) and (4.72). 

Group Law Formula (4.72) implies an interesting group law for the co-motion 
functions, already noticed in [122]: the ith function is the i-fold composition of the 
first function with itself, 

. fi = f1 ◦ · · · ◦ f1︸ ︷︷ ︸
i times

,

and the N -fold composition of the first function gives the identity .f0(r) = r . 

Explicit Examples The following examples further illustrate the nonlinear gov-
erning Eqs. (4.68)–(4.69), and may serve as useful benchmarks for numerical 
simulations in the strongly interacting limit (or close to it). 

Example 4.5, ctd  Consider a two-electron system with . ρ being the uniform density 
in a one-dimensional interval .[0, L]. In this case we have .Gρ(r) = r/L, and 
formula (4.72) readily yields the co-motion function (4.40). For its graph, see 
Fig. 4.2. Mathematically this map switches the right and left half of the interval; 
note that its composition with itself indeed gives the identity, as it must by the group 
law. 

Example 4.18 ([68, 71]) Let .ρ(r) = N/π(1 + r2) be the Lorenzian density, 
normalized so that .

∫
ρ = N . In this case .Gρ(r) = 1

π
arctan r + 1

2 and so Eq. (4.68)
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for . f1 in the region .Gρ(r) ≤ N−1
N

is, recalling the notation .f0(r) = r , 

. arctan f1(r) = arctan r + π
N

. (4.73) 

When .N = 2 it follows that 

.f1(r) = −1

r
(4.74) 

(note that then the derivatives of both sides of (4.73) agree, as do their values at 
.r = 0). From now on let us assume .N ≥ 3. In this case we can use the addition 
formula for the tangent, .tan(x+y) = (tan x+tan y)/(1−tan x tan y) for . x, y, x+y �∈
π/2 + Z, and obtain 

.f1(r) = r + t1

1 − t1r
, t1 = tan π

N
. (4.75) 

In the region .Gρ(r) > N−1
N

, or equivalently .arctan r > π
2 − π

N
, or equivalently 

(because .tan(π
2 − x) = 1/ tan x) .r > 1/t1, Eq. (4.69) for . f1 is 

. arctan f1(r) − (−π
2

) = arctan r − π

2
+ π

N
,

that is to say .arctan f1(r) = arctan r + π
N

− π . Using the addition formula for 
the tangent and .tan x = tan(x − π) we again find that . f1 is given by (4.75), so  
this formula describes . f1 on the whole real line. It remains to compute its i-fold 
composition . fi . Here we give a different derivation as compared to [68, 71]. Note 
that mathematically . f1 is a Moebius map, i.e. a map of the form . Ma(r) = (r +
a)/(1 − ar). Using the (elementary to check) composition formula . Ma ◦ Mb =
M a+b

1−ab
and the addition formula for the tangent we find 

.fi(r) = r + ti

1 − tir
, ti = tan iπ

N
(i ∈ {1, . . . , N − 1}). (4.76) 

Moreover, setting .i = N in the above formula we recover the abstract fact that the 
N -fold composition of . f1 must be the identity. Hence the co-motion functions for 
the Lorenzian density form a discrete subgroup of the Moebius group. For the graph 
of these functions when .N = 5 see Fig. 4.4. 

4.3.12 Radially Symmetric Densities 

When the one-body density . ρ is radially symmetric, Seidl, Gori-Giorgi and Savin 
[127] conjectured an explicit minimizing probability measure in (4.25) of a radial-



216 G. Friesecke et al.

symmetry-preserving SCE form which is related to the explicit SCE state of one-
dimensional systems.5 Let us describe their conjecture in detail. 

The starting point is the following reduction to a 1d problem with effective 
interaction. 

Lemma 4.19 (Reduction to a 1d Problem, [9, 113]) Let .ρ : Rd → R be an 
integrable density with .ρ ≥ 0 and .

∫
ρ = N which is radially symmetric, that is, 

.ρ(r) = ρ0(|r|) for some function . ρ0, and let 

. ρrad(r) = ωdrd−1ρ0(r),

where . ωd is the area of the unit sphere in . Rd (for .d = 3, .ωd = 4π ). Then the SCE 
functional defined by (4.26) reduces to 

. V SCE
ee [ρ] = min

η∈P([0,∞)N ), η 
→ρrad

∫

[0,∞)N
Vrad

ee (r1, . . . , rN ) dη(r1, . . . , rN ),

(4.77) 

where .Vrad
ee is the reduced Coulomb cost 

. Vrad
ee (r1, . . . , rN ) = min

⎧
⎨

⎩
∑

1�i<j�N

1

|rj − ri | : |ri | = ri ∀i = 1, . . . , N

⎫
⎬

⎭ .

(4.78) 

Moreover, .� ∈ P(RdN) is a minimizer for the full SIL variational principle (4.25) 
in d dimensions if and only if its radial projection .�rad, defined by 

. 

∫

A1×...×AN

d�rad(r1, . . . , rN ) =
∫

{|r1|∈A1}×...×{|rN |∈AN }
d�(r1, . . . , rN)

for all intervals .A1, . . . , AN , is a minimizer for the right-hand side of (4.77) and 
.Vee(r1, . . . , rN) = V rad

ee (|r1|, . . . , |rN |) .�-a.e. 

In [122, 127], the following interesting explicit state was conjectured to be 
optimal for the reduced problem in (4.77): 

.dη(r1, . . . , rN ) = ρrad(r1)

N∏

n=2

δ(rn − S(n)(r1)), (4.79)

5 The original conjecture concerned the physical case .d = 3. Subsequently, two-dimensional 
models have also been considered in the literature [125, 127]. 
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Fig. 4.5 SGS state (left panel) for the Lithium atom density (right panel). The extreme angular 
and radial correlation exhibited by this state is illustrated here while sending one of the electrons 
(the leftmost) to infinity 

where .S(n) denotes the n-fold composition .S ◦ · · · ◦ S and . S : [0,∞) → [0,∞)

is defined as follows. Let .0 = a0 < a1 < · · · < aN−1 < aN = ∞ be such that 
the intervals .An = [an−1, an) between successive . an’s carry equal mass, that is, 
.
∫
An

ρrad = 1 for all n, and let .S|An be the unique function such that 

.S|An decreasing, S transports ρrad|An to ρrad|An+1 (4.80) 

(with the convention .AN+1 = A1). In terms of the original SIL problem (4.25), 
this ansatz corresponds to the SCE ansatz (4.30) with maps satisfying the additional 
property 

. |fn(r)| = S(n)(|r|)

for the above explicit S and with suitably chosen angles so that .� 
→ ρ and 
.Vee(r1, . . . , rN) = V rad

ee (|r1|, . . . , |rN |) .�-a.e. We call S the SGS map, and the 
probability measure . η given by (4.79), (4.80) the SGS state. See Figs. 4.5 and 4.6. 

The SGS state has been rigorously proved to be optimal in some specific cases. 

Example 4.20 (SCE for Radially Symmetric Densities, [32, Theorem 4.10]) Let 
.N = 2, and let . ρ be a radially symmetric density on . Rd such that .ρ(r) > 0 for 
all . r. Then the optimal co-motion function f is given by 

. f (r) = s(|r|) z
|z|

for some function .s : [0,+∞) → R such that .s � 0, s is increasing, 
.limr→+∞ s(z) = 0, and .limr→0+ s(r) = −∞.
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Fig. 4.6 SGS state when .N = 7. Top: a radial measure .ρrad(r). Bottom left: the maps 
.S, S(2), . . . , S(6) : [0,∞) → [0,∞), plotted with colors green, blue, red, violet, yellow, and 
brown. Bottom right: the same graphs under a change of variables .y1 = ∫ x1

0
ρrad
N

which transports 
.ρrad to the uniform density on the interval .[0, 1]. Picture from [124] 

The function s in the above example corresponds to minus the SGS map, i.e. . s = −S

in the .N = 2 case. 
Optimality of the SGS state has also been proved for some special class of 

densities . ρ when .N = d = 3 [30, 57, 125] and .N = 3 and .d = 2 [11]. 
Recently, counterexamples of radially symmetric probability densities were 

found for which the SGS state is not optimal. The simplest one is a uniform density 
on a thin annulus: 

Example 4.21 ([30], see also [11, 57, 124, 125] for related examples) Let .N = 3. 
For sufficiently small .ε > 0, and the density 

.ρrad
ε = cε1[1,1+ε] (4.81) 

(with the constant . cε chosen such that .
∫

ρrad = 3), the SGS state . ηε defined 
by (4.79)–(4.80) is not optimal for the variational problem (4.77). 

This example illustrates that guessing the optimal SCE states can be a tricky 
business even for 1d problems, and makes it all the more remarkable that optimality 
of Seidl’s guess for the 1d Coulomb problem is a rigorous theorem (Theorem 4.17). 
The proof of nonoptimality relies on a Taylor expansion of the reduced interaction 
.Vrad

ee (defined in Eq. (4.78)) at the point .(1, 1, 1) and on cyclical monotonicity 
methods from optimal transport theory.
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While this counterexample disproves optimality of the SGS state in general, the 
density (4.81) is quite different from typical atomic densities and the following 
remains an interesting mathematical problem. 

Open Problem Find sufficient conditions on radial densities . ρ such that the SGS 
state is optimal for (4.77). 

4.3.13 An Example with Irregular Co-motion Functions for 
Repulsive Harmonic Interactions 

One of the more challenging properties of co-motion functions is that they are 
typically discontinuous. Here we give an extreme example with modified electron-
electron interaction which is discontinuous everywhere, due to Di Marino et al. [42]. 

Example 4.22 Let d be arbitrary, . Vee(r1, . . . , rN) = − ∑
1≤i<j≤N |ri − rj |2

(repulsive harmonic interaction), and . N = 3. Let .ρ = 3 · 1[0,1]d (uniform density on 
a cube in . Rd ). Then there exists a nowhere continuous map . T : [0, 1]d → [0, 1]d
which transports . ρ to itself such that 

.d�(r1, r2, r3) = ρ(r1)

N
δ(r2 − T (r1))δ(r3 − T (T (r1)) (4.82) 

is an optimal probability measure for the SIL problem (4.25). 

The map T is an explicit fractal map. For .d = 1 it is depicted in Fig. 4.7 and 
constructed as the unique fixed point of the iteration 

.f 
→ g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
3f (3x) + 1

3 for 0 � x < 1
3

1
3f (3x − 1) + 2

3 for 1
3 ≤ x < 2

3
1
3f (3x − 2) for 2

3 � x < 1,

(4.83) 

Fig. 4.7 Construction of the optimal map T in Example 4.22. The picture shows the graph (in 
blue) of the first few iterations of Eq. (4.83); each graph consists of three scaled copies of the 
previous one. The exact map is reached in the limit of infinitely many iterations
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starting with .f (x) = x. To see what the iteration is doing, divide .[0, 1]2 into a 
.3 × 3 grid of squares and put scaled copies of the graph of the original function into 
the two squares directly above the diagonal and the bottom right square. Optimality 
of the resulting fractal SCE state (4.82) is easy to see from the following special 
property of the repulsive harmonic cost which was first observed by Pass [112]: 
thanks to the identity .Vee = |r1 + . . . + rN |2 − N

∑N
i=1 |ri |2 and the fact that the 

integral of the second term against a probability measure . � only depends on its 
marginal, the minimizers of the SIL problem are precisely the probability measures 
supported on the surface .r1 + · · · + rN = 0. 

The above example and construction works for arbitrary N , see [42]. 

Open Problem Do such extreme examples also occur for the Coulomb interaction? 
Note that the repulsive harmonic interaction arises by locally Taylor-expanding the 
Coulomb interaction in angular direction. 

4.3.14 Minimizers of the Discretized SIL Variational Principle 
Are Quasi-Monge States 

We now come back to the important issue that the SIL variational principle (4.25) 
still requires minimization over a high-dimensional space of N -point probability 
measures, whereas the low-dimensional SCE ansatz (4.30) can fail to yield an 
optimizer of (4.25). One can ask whether some modified low-dimensional ansatz 
is enough to solve (4.25) exactly. In other words, can one achieve Seidl’s original 
goal of solving the strongly interacting limit of DFT with a low-dimensional ansatz 
that can be easily stored on a computer? 

For the discretization of (4.25) on a grid, Friesecke and Vögler [53] found a 
modified ansatz which achieves this, for arbitrary space dimensions, densities and 
interaction potentials: 

.d�(r1, . . . , rN) = SN

∫

R
d
α(r)

N∏

n=1

δ
(
rn − fn−1(r)

)
dr (4.84) 

= 
1 

N !
∑

σ

∫

R
d 
α(r) 

N∏

n=1 

δ
(
rn − fσ(n−1)(r)

)
dr, 

where . σ runs over all permutations of the indices .0, . . . , n − 1, . α is some (free to 
choose) probability density on the single-particle space . Rd , and the . fn are maps 
from .Rd to . Rd . States of this form are called quasi-Monge states or quasi-SCE 
states. With the specific choice .α = ρ

N
, the quasi-Monge ansatz (4.84) reduces 

precisely to the SCE (alias Monge) ansatz in its symmetric form (4.42). The novelty 
is the additional freedom of choosing the auxiliary density . α. For the quasi-Monge 
ansatz, the marginal constraint .� 
→ ρ takes, instead of the conditions .fn�ρ = ρ
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(.n = 0, . . . , N − 1) (Eq. (4.32)), the form of a single condition, 

.
1

N

N−1∑

n=0

fn�α = ρ

N
. (4.85) 

That is, the average push-forward of the auxiliary density . α under the quasi-SCE 
maps must be the (suitably normalized) physical density. 

Plugging the ansatz (4.84) into the SIL variational principle (4.25) and integrat-
ing out the variables .r2, . . . , rN yields the quasi-Monge or quasi-SCE variational 
principle 

. Minimize
∫

R
d
Vee(f0(r), . . . , fN−1(r)) α(r) dr over probability densities α

and maps f0, . . . , fN−1,

(4.86) 

with the minimization being subject to the constraint (4.85). 

Theorem 4.23 (Justification of the Quasi-Monge Ansatz, [53]) Let . ρ be any 
discrete N -particle density on . Rd , that is to say .ρ(r) = ∑�

i=1 ρiδ(r − ai ) for some 
distinct discretization points .ai ∈ Rd and some .ρi ≥ 0 with .

∑
i ρi = N , and 

let .Vee : RdN → R ∪ {+∞} be any interaction potential which is symmetric 
in the electron coordinates (e.g., the Coulomb interaction . Vee(r1, . . . , rN) =∑

i<j 1/|ri − rj |). Then the SIL problem (4.25) possesses a minimizer which is a 
quasi-Monge state (4.84). Equivalently, it possesses a minimizer of the form (4.88), 
i.e., a superposition of at most . � symmetrized Dirac measures. 

This result rigorously reduces the number of unknowns from exponential to linear 
with respect to the number of electrons; more precisely, from . �N (the dimension of 
the space of N -point probability measures supported on .{a1, . . . , a�}N ) to . �·(N +1)

(. � unknowns for each of the N quasi-Monge maps, and another . � unknowns for the 
auxiliary density . α). 

The above result fails if the class of quasi-Monge states is narrowed to Monge 
(alias SCE) states, see [49]. For continuous . ρ’s, it is an open question whether the 
SIL problem always (or at least in the Coulomb case) admits minimizers of quasi-
Monge form. 

Proof of Theorem 4.23 (Following [53].) Let us explain the intuition and reasoning 
behind the quasi-Monge ansatz and Theorem 4.23, which comes from convex 
geometry. Before passing to a geometric viewpoint, we note that by the symmetry of 
.Vee the minimization in (4.25) can be restricted to symmetric probability measures
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(see Remark 4.2); moreover any symmetric probability measure .� ∈ P(RdN) with 
.� 
→ ρ must be of the form 

. d�(r1, . . . , rN) =
�∑

i1,...,iN=1

γi1...iN δ(r1 − ai1) · · · δ(rN − aiN )dr1 . . . drN

for some symmetric tensor .(γi1...iN ) ∈ R�×...×� with nonnegative entries which sum 
to 1. Now geometrically, for fixed discretization points .a1, . . . , a� the set of these 
probability measures is a finite-dimensional convex polytope; let us denote it by 
.Psym({a1, . . . a�}N). The subset satisfying the marginal constraint .� 
→ ρ, i.e. 

.

�∑

i2,...,iN=1

γi1i2...iN = ρi1 ∀ i1 ∈ {1, . . . , �}, (4.87) 

is also a convex polytope called the Kantorovich polytope; let us denote it by 
.Pρ({a1, . . . a�}N). While general probability measures in these sets possess a 
huge number of coefficients which increases combinatorially with the number 
N of particles, the key point is that the extreme points6 of these sets are very 
sparse, with only a small number of nonzero coefficients. The extreme points of 
.Pρ({a1, . . . , a�}) are easily seen to be symmetrized products of delta functions, 
.SNδ(r1 − ai1) · · · δ(rN − aiN ), where . SN is the symmetrization operator. Now con-
sider a subset of a convex polytope satisfying one linear constraint, geometrically: 
the intersection of the polytope with a hyperplane. It is geometrically expected (and 
not difficult to prove) that all extreme points of this new set are convex combinations 
of just two extreme points of the original polytope. Analogously, by a well-known 
result in convex geometry the intersection of a convex polytope with k hyperplanes 
has extreme points given by convex combinations of just .k+1 of the original extreme 
points. Since the marginal condition (4.87) imposes .� − 1 constraints (note that one 
of the . � constraints is redundant due to the sum of the .γi1...iN being 1), the extreme 
points of the Kantorovich polytope are convex combinations of just . � symmetrized 
delta functions, i.e., probability measures of the form 

.

�∑

ν=1

ανSNδ(r1 − a
i
(ν)
1

) . . . δ(rN − a
i
(ν)
N

) (4.88) 

for some nonnegative coefficients . αν . Defining the maps . fn by . fn−1(aν) = a
i
(ν)
n

yields that all extreme points are quasi-Monge states (4.84). Theorem 4.23 now 
follows from the general principle that the minimum of a linear functional (such as 
.
∫

Vee d�) over a convex polytope is always attained at some extreme point. ��

6 These are the points that cannot be written as convex combinations of any other points in the set. 
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The quasi-Monge (or quasi-SCE) ansatz and Theorem 4.23 underlie the numeri-
cal method described in Sect. 4.4.5.3. 

4.3.15 Entropic Regularization of the SCE Functional 

We have seen in Fig. 4.1 and Sect. 4.3.8 that in the strongly interacting limit, the 
N -body density concentrates on the lower-dimensional manifold on which the 
classical effective potential energy .Vee(r1, . . . , rN) − ∑

i vSCE(ri ) is minimal. A 
regularization of the SCE functional which has nice mathematical properties and 
smears out the N -body density is the following: 

.Vτ
ee[ρ] = inf

π∈P(RdN )∩L1(RdN ), π 
→ρ

Vee[π ] + τS[π ]. (4.89) 

Here .τ > 0 is a small parameter, .Vee is the usual electron interaction energy, and S 
is (minus) the Shannon–Von Neumann entropy, 

.S[π ] =
∫

R
dN

π(r1, . . . , rN)
(

log π(r1, . . . , rN) − 1
)

dr1 . . . drN . (4.90) 

As shown in Lemma 4.27 below, the negative part of the entropy density has 
finite integral under very mild conditions on . ρ (e.g., finite first moment suffices), 
and so definitions (4.89)–(4.90) make rigorous sense. The existence of a minimizer 
in (4.89) can be obtained assuming that .ρ log ρ ∈ L1(Rd) [60]. Physically, the right-
hand side in (4.89) can be viewed as the free energy of N classical particles with 
interaction potential .Vee and density . ρ at inverse temperature . τ . But our goal here is 
not to model a physical system at finite temperature, but instead to approximate the 
SCE functional. 

Figure 4.8 illustrates the effect of the entropy term in a two-electron example: 
the larger the regularization parameter . τ , the more the minimizers . π are spread out 
around the support of the SCE state. (Recall that by Theorem 4.4, when .N = 2 the 
SIL variational principle is uniquely minimized by an SCE state.) 

Fig. 4.8 Numerically computed optimal density .πτ (r1, r2) in (4.89) for two electrons in one 
dimension and the density .ρ(r) = c0/ cosh r , .r ∈ [−10, 10], for different values of the 
regularization parameter . τ . Here . c0 is a normalization constant, and we have used the effective 
Coulomb interaction [7] .Vee(r1, r2) = 1.07 e−|r1−r2|/2.39
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The corresponding regularization for the Wasserstein distance squared instead 
of the SCE functional (Example 4.12 instead of Example 4.11) in fact goes 
back to Erwin Schrödinger in 1931 [121], and had a completely different moti-
vation: Schrödinger was looking for models for the “most likely” evolution law 
between two probability distributions of particle positions which have been empir-
ically observed at different times, perhaps hoping to re-discover his—then still 
controversial—quantum mechanics in a novel way. 

An equivalent entropic problem has been considered by Chayes et al. in [19, 20]. 
In their setting, the integration in the entropy functional S is not against the 
Lebesgue measure but against the product measure .

∏N
i=1 ρ(ri )/N , which consti-

tutes a natural model in classical statistical mechanics. The role of the reference 
measure will be explained below and can be understood via Eq. (4.93). 

In optimal transport, entropic regularization became a popular basis for compu-
tational methods following an influential paper by Cuturi [34] in machine learning 
and Galichon and Salanié in economics [54]; see Sect. 4.4 for a computational 
algorithm. Regularization by entropies other than the Shannon–Von Neumann one 
is considered in [41, 99]. 

4.3.15.1 Basic Properties 

Let us now informally discuss the basic properties of (4.89). 

Unique Minimizer Assuming that .ρ log ρ ∈ L1(Rd), a minimizer .πτ in (4.89) 
exists [60]. This is expected from the convexity of the functional .Vee + τS. Since 
the functional is strictly convex on the domain where it is finite, minimizers must be 
unique. 

Euler–Lagrange Equation; Form of Minimizer Assume a Lagrange multiplier rule 
as in (4.61). That is, assume the existence of Lagrange multipliers .(λ(r1))r1∈Rd such 
that . πτ is the unconstrained minimizer of the Lagrangian 

. L[π ] =
∫

R
dN

(
Vee(r1, . . . , rN) −

N∑

i=1

λ(ri )
)
π(r1, . . . , rN)dr1 . . . drN + τS[π ].

Thus the function .λ(r) has the usual physical interpretation of DFT as minus the 
potential that enforces the density constraint, and will in the following be denoted 
.uτ (r). It follows that 

.0 = d

dt

∣∣∣
t=0
L[π + tη]
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for all variations . η with .
∫

η = 0 and .π ± η ≥ 0. That is to say, 
.0 = ∫ [(Vee − ∑

i uτ (ri )) + τ log π ]η and therefore 

. Vee −
∑

i

uτ (ri ) + τ log π = const.

By solving for . π and adjusting . uτ by an additive constant, it follows that 

.πτ (r1, . . . , rN) =
N∏

i=1

aτ (ri )e
− Vee(r1,...,rN )

τ with aτ (ri ) = e
1
τ
uτ (ri ). (4.91) 

The function . aτ can—independently of its construction above with the help of 
Lagrange multipliers—be interpreted as an entropic weight function which makes 
the probability density . πτ satisfy the constraint .πτ 
→ ρ. Note that by this constraint 
and Eq. (4.91), . aτ must satisfy the following governing equation in which Lagrange 
multipliers no longer appear: 

. aτ (rj )

∫

R
d(N−1)

∏

i �=j

aτ (ri )e
− Vee(r1,··· ,rN )

τ

∏

i �=j

dri = ρ(rj )

N
∀ j ∈ {1, . . . , N}.

(4.92) 

The above equations constitute the so-called (multi-marginal) Schrödinger sys-
tem. When the density . ρ is Gaussian and the interaction potential w is taken to be 
the repulsive or attractive harmonic interaction, the entropically regularized problem 
can be solved exactly, see [58], for the one-dimensional case, and [39, 79, 103] for  
the general case. In [17], Carlier and Laborde showed the existence of a solution of 
the system (4.92) via an inverse function theorem argument by assuming that the 
one-body density . ρ belongs to .L∞(Rd). 

Relative Entropy Formulation The functional .Vee + τS agrees up to an additive 
constant with the Kullback–Leibler divergence (or minus the relative entropy)7 

between . π and a kernel function . K of the electronic interaction .Vee [89]: 

. Vee[π ] + τS[π ] = τKL(π |K) − τ with K = e−Vee/τ .

Thus the optimizer .πτ is the density with marginal . ρ which has minimal relative 
entropy with respect to the kernel . K.

7 The KL divergence between two nonnegative densities with possibly unequal mass is formally 
defined as .KL(f |g) = ∫

f log f
g

. 
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The Role of the Reference Measure In the literature, the entropy functionals which 
are typically studied replace integration against the Lebesgue measure in (4.90) by 
integration against the product of the marginals .μ⊗N = ⊗N

i=1μ (or any other finite 
reference measure), where .ρ/N = μ. As shown in Lemma 1.5 in [40] (see also [60] 
for the Coulomb case), both problems are equivalent since the following identity 
holds 

. Vτ
ee[ρ] = inf

π 
→ρ

{
Vee[π ] + τ

∫

R
dN

dπ

dμ

(
log

dπ

dμ
− 1

)
dμ

}
+ τ

∫

R
d
ρ log

ρ

N
dr .

(4.93) 

Therefore, whenever at least one side of the equality above is finite, the original 
variational problem from the definition of .Vτ

ee[ρ] (Eq. (4.89)) and the variational 
problem defined on the right-hand side of (4.93) have the same minimizers. 

Dual Formulation As for the exact (unregularized) strong-interaction limit of DFT, 
there is a dual variational principle for the Lagrange multiplier and an associated 
dual construction of . V τ

ee[ρ]. We have  

.Vτ
ee[ρ] = sup

u
J [u], (4.94) 

where 

.J [u] =
∫

R
d
u(r)ρ(r)dr − τ

∫

R
dN

e− 1
τ
[Vee(r1,...,rN )−∑

i u(ri )]dr1 . . . drN (4.95) 

and the supremum in (4.94) is over a suitable class of potentials. The second 
term in (4.95) can be viewed as a soft version of the inequality constraint 
.Epot(r1, . . . , rN) = Vee(r1, . . . , rN)−u(r1)+ . . .+u(rN) ≥ 0 in the unregularized 
theory (see (4.149)), as it penalizes deviations from this inequality. Indeed, via the 
Laplace principle we have that, whenever the second term in (4.94) is finite, 

. lim
τ→0+ −τ log

(∫

R
dN

e− 1
τ
[Vee(r1,...,rN )−∑

i u(ri )]dr1 . . . drN

)

= inf
r1,...,rN∈Rd

{Epot(r1, . . . , rN)}.

In the discrete setting, this is precisely the LogSumExp formula. The existence of 
an optimizer . uτ for the dual problem and the representation formulae (4.91), (4.96) 
with this . uτ were proved in [40, 41] under the assumption that . ρ log ρ ∈ L1(Rd)

and .Vee is measurable and bounded.
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Functional Derivative As in exact SCE theory, the functional derivative of the 
energy functional is formally given by the optimal potential in the dual problem, 
that is to say 

.
δVτ

ee[ρ]
δρ

= uτ + const, (4.96) 

where . uτ is the maximizer of (4.95) (assuming such a maximizer exists and is 
unique). As in SCE theory, a natural choice of the additive constant is to require 
.lim|r|→∞

(
uτ (r) + const

) = 0. The ensuing potential .vτ = uτ + const is then an 
approximation to the SCE potential. 

4.3.15.2 Relation with the Levy–Lieb Functional 

Just like the SCE functional itself, its entropic regularization is a rigorous lower 
bound of the exact functional, provided the regularization parameter . τ is chosen 
suitably. More precisely: 

Theorem 4.24 ([125]) Let . � be any N -electron wavefunction in the space . WN

(see (4.7)), or alternatively any bosonic wavefunction in .H 1(RdN), and suppose 
.� 
→ ρ. Let .Vee be the Coulomb interaction. Then the scaled Levy–Lieb functional 
defined in Eq. (4.17) satisfies 

.
Fλ[ρ]

λ
≥ V τ

ee[ρ] with τ = π

2λ
. (4.97) 

In particular, the original Levy–Lieb functional (4.11) satisfies 

.FLL[ρ] ≥ V
π/2
ee [ρ]. (4.98) 

This result is a consequence of the logarithmic Sobolev inequality (LSI). We 
include a proof, following Seidl et al. [125]. We begin by recalling a standard version 
of the LSI. 

Theorem 4.25 (LSI, Corollary 7.3 in [70]) Let .ν ∈ P(Rn) such that . ν(r) =
e−V (r) with .D2V � κId. Then, for every locally integrable function .f � 0 on . Rn

such that .f ν ∈ P(Rn) we have that .
∫
R

n f log f dν � 2
κ

∫ |∇√
f |2 dν. 

This implies the following LSI for the Lebesgue measure: 

Corollary 4.26 (LSI for the Lebesgue Measure, [125]) Let .f � 0 be a function 
such that .

√
f ∈ H 1(Rn) and .f ∈ P(Rn). Then .

∫
R

n f log f dr � 1
π

∫
R

n |∇√
f |2dr.
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Proof of Corollary 4.26 

1. In the LSI in Theorem 4.25, the requirement on f that .
∫

f dν = 1 can be relaxed 
to .0 <

∫
f dν ≤ 1. This follows by applying the LSI to .f/α, .α = ∫

f dν, and 
noting that the extra term .−(1/α)

∫
f log α dν on the left-hand side is .≥ 0. 

2. Take .νr2(r1) = e−π |r1−r2|2 , then . ν satisfies the assumption of the LSI with . κ =
2π , and moreover .

∫
f dνr2 ≤ 1. Hence by the LSI, 

. 

∫
f log f dνr2 ≤ 1

π

∫
|∇√

f |2dνr2 .

3. Integrate over . r2 and use that .
∫

e−π |r1−r2|2dr2 = 1. This yields the assertion. 
��

Proof of Theorem 4.24 Let .� ∈ WN , .� 
→ ρ, and let . Π be its N -point position 
density .(4.8). By a version of the Hoffmann-Ostenhof inequality [77],8 

. 
√

Π ∈
H 1(RdN) and 

. T [�] ≥ 1

2

∫

R
dN

|∇√
Π |2dr1 . . . drN .

This together with the LSI for the Lebesgue measure (Corollary 4.26) applied to . π
gives 

. 
1

λ
T [�] + Vee[�] � π

2λ

∫

R
dN

Π log Π dr1 . . . drN +
∫

R
dN

Vee Π dr1 . . . drN

= π

2λ

(
S(Π) + 1

)
+ Vee[Π ].

Taking the infimum over .� ∈WN yields .Fλ[ρ]/λ ≥ V τ
ee[ρ] + τ , with . τ as in the 

theorem. ��
Although Theorem 4.24 provides a lower bound for the Levy–Lieb func-

tional (4.11), in practice this bound can be rather loose [58].

8 Strictly speaking, this inequality and related ones are proved in [77] under the tacit assumption 
that .

√
Π (or related reduced quantities) belong to .H 1 and can be differentiated by the chain rule. 

For further discussion of this point see Chap. 5 by Kvaal in this volume. 
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4.3.15.3 Well Definedness of Entropy and Convergence to the SCE 
Functional 

We now show that the entropy is well defined under very mild conditions on . ρ (e.g., 
finite first moment suffices), and that the entropically regularized functional . Vτ

ee
converges to the SCE functional when the regularization parameter tends to zero. 

Note that a priori both the positive and the negative part of the integral (4.90) 
could be divergent; Lemma 4.27 excludes this for the negative part, and so the 
integral always has a well defined value in .R ∪ {+∞}. 
Lemma 4.27 (Well-Definedness of Entropy and of the Regularized SCE Func-
tional) Let .ρ ∈ L1(Rd), .ρ ≥ 0, .

∫
ρ = N , and assume . ρ has finite first moment, 

that is to say .
∫ |r|ρ(r)dr < ∞. Let .π ∈ P(RdN) ∩ L1(RdN) with .π 
→ ρ. Then 

the negative part .(π log π)− has finite integral; more precisely, for some constant 
.Aρ > 0 which depends only on . ρ but not on . π

. 

∫
(π log π)− ≥ −Aρ > −∞,

where .f−(r) = min{f (r), 0} denotes the negative part of a function f . Hence S as 
defined by (4.90) is well defined as a functional 

. S : {π ∈ P(RdN) ∩ L1(RdN) : π 
→ ρ} → R ∪ {+∞},

and .V τ
ee[ρ] as defined by (4.89) is well defined as an element of .R ∪ {+∞}. 

The assumption that . ρ has finite first moment cannot be omitted. For instance, 
for .N = 2 and .d = 1 the N -body density 

. π(r1, r2) = c0

2∏

i=1

1

ri(log ri)2
on [2,∞)2,

continued by zero to . R2 and with . c0 chosen such that .
∫

π = 1, belongs to . L1(R2)

but satisfies .
∫
(π log π)− = −∞, as the interested reader can check using that 

.
∫ ∞

2
1

z| log z|α dz = ∞ for .α = 1 but .< ∞ for .α > 1. In particular, in such a case the 
equivalence described in (4.93) does not necessarily hold. 

The lemma implies that for any interaction potential .Vee on .RdN which is 
symmetric and bounded from below, such as the Coulomb interaction, .V τ

ee[ρ] is 
well defined as an element of .R ∪ {+∞}. 
Proof of Lemma 4.27 .π log π is .≤ 0 precisely in the region . 
 = {r ∈ RdN :
π(r) ≤ 1}. Split . 
 into .
< = {r ∈ 
 : 0 ≤ π(r) < e−(|r1|+...+|rN |)} and . 
> =
{r ∈ 
 : π(r) ≥ e−(|r1|+...+|rN |)}. Since .g(z) = z log z satisfies .|g(z)| ≤ C

√
z in
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.[0, 1] for some constant C, 

. 

∫

R
dN

|(π log π)−| =
∫


<

|(π log π)−| +
∫


>

|(π log π)−|

≤ C

∫


<

e−(|r1|/2+...+|rN |/2)dr1 . . . drN

+
∫


>

π(r1, . . . , rN)
(
|r1| + · · · + |rN |

)
dr1 . . . drN

≤ C
(∫

R
d

e−|r1|/2dr1

)N +
∫

R
d
ρ(r1)|r1|dr1 =: Aρ. (4.99) 

By the assumption that . ρ has finite first moment, the right-hand side is finite, 
completing the proof of the lemma. ��

Finally, we prove that—as intuitively expected—the entropically regularized 
functional .V τ

ee converges to the exact SCE functional when the regularization 
parameter tends to zero. The corresponding .�-convergence result was obtained in 
[60]. 

Theorem 4.28 Let . ρ be any N -electron density which belongs to the class . DN

(see (4.12)) and has finite first moment, and let .Vee be the Coulomb interaction. 
Then 

. lim
τ→0

V τ
ee[ρ] = V SCE

ee [ρ]. (4.100) 

Proof We combine the upper bound on .V τ
ee[ρ] from Theorem 4.24, the asymptotic 

result on .Fλ[ρ]/λ in Eq. (4.19) (see Theorem 4.3), and the lower bound from 
Lemma 4.27. By inequality (4.99) we have for any . π 
→ ρ

. τS[π ] ≥ τ

∫

R
dN

(π log π)− − τ ≥ −τ
(
Aρ + 1

)

and hence, by adding .Vee[π ] to both sides and taking the infimum over . π

. V τ
ee[ρ] ≥ V SCE

ee [ρ] − τ
(
Aρ + 1

)
.

Obviously this lower bound converges to .V SCE
ee [ρ] as .τ → 0. On the other hand, 

by Theorem 4.24 we have .V τ
ee[ρ] ≤ Fλ[ρ]/λ and by Theorem 4.3 this upper bound 

also converges to .V SCE
ee [ρ]; hence so must .V τ

ee[ρ]. ��
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4.4 Numerical Methods and Approximations 

The SCE functional cannot at the moment be accurately and efficiently computed for 
general three-dimensional densities and large N . But accurate numerical methods 
are available for small N or special situations, novel methods aimed at large N are 
under development, and less accurate approximations can already be computed for 
large N . We review these methods and approximations in this section, and their use 
within Kohn–Sham DFT in Sect. 4.5. 

4.4.1 Numerical Methods Based on Co-motion Functions 

Numerical implementations using co-motion functions were confined to the follow-
ing cases:

• the exact maps are known: general N in one dimension (see Sect. 4.3.11);
• an explicit ansatz, able to get very close to the true minimum, exists: spherically 

symmetric (radial) case (see Sect. 4.3.12). 

In addition, co-motion functions can be extracted from optimal plans in the case

• .N = 2, for which the existence of the map is proven and there are 1-1 
correspondences between map, optimal plan, and Kantorovich potential (see 
Eqs. (4.38) and (4.39)). 

We review here and in the following section the implementation for these three 
classes of problems. Their use in combination with Kohn–Sham DFT is then 
discussed in Sect. 4.5. 

4.4.1.1 One-Dimensional N -Electron Systems 

The SCE functional has been implemented for one-dimensional (1D) many-electron 
systems using the exact co-motion functions (maps) of Seidl [122], which we 
reported and illustrated in Sect. 4.3.11. These applications typically aim at modeling 
physical systems in which electrons are confined in elongated traps (quantum 
wires): the interaction used is thus 3D Coulomb renormalized for small interparticle 
distances. The idea is that at long range the electrons feel the .1/|x| interaction, but at 
short range they can avoid each other due to the finite thickness of the wire, which 
is mimicked by removing the divergence at .x = 0. For example, a widely used 
effective quasi-1D interaction is obtained by integrating the 3D Coulomb interaction 
over normalized gaussians in two of the three spatial directions [64], modeling
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harmonic confinement within a wire of thickness b, 

. vwire
ee (x) = 1

4π b2

∫ ∞

−∞
dy

∫ ∞

−∞
dz

e
− 1

4b2 (x2+b2)

√
x2 + y2 + z2

=
√

π

2 b
exp

(
x2

4 b2

)
erfc

( |x|
2 b

)
.

(4.101) 

This interaction is finite at .x = 0, where it has a cusp, behaves as .1/|x| for large x 
and it is convex for .x ≥ 0. Other popular quasi-1D interactions are the soft Coulomb 
and the regularized Coulomb, 

.vsoft
ee (x) = 1√

x2 + a2
, . (4.102) 

v
reg 
ee (x) = 1 

|x| + a 
. (4.103) 

Notice, however, that the 1D maps of Seidl [123] are exact only for interactions 
(costs) that are convex for .x ≥ 0 [27]. This means that when using .vsoft

ee (x), which 
is concave for .x ∈ [0, a/

√
2], the Seidl maps are not guaranteed to yield the true 

minimizer, as illustrated, for example, in Fig. 2 of Ref. [71]. 
Numerical realizations of the 1D Seidl maps are reported in Refs. [71, 72, 100– 

102, 104]. The implementation of the maps directly follows from Sect. 4.3.11: given  
a density .ρ(x) on a grid, the cumulant function .Fρ(x) is evaluated on the same grid, 
and its inverse .F−1

ρ (x) is simply obtained by swapping the columns. The grid can 
be restored by using a spline interpolation for .F−1

ρ (x), and the maps are readily 
obtained. Numerical issues can appear in regions where the density is close to zero, 
with .F−1

ρ (x) raising extremely steeply. An alternative method to obtain the 1D maps 
without the need to construct .F−1

ρ (x) is discussed in Ref. [72]. 

4.4.1.2 Spherically Symmetric Densities 

For spherically symmetric densities the radial SGS maps (4.79)–(4.80) conjectured 
in [122, 127] have been implemented in Refs. [63, 127] for the 3D case using 
numerical densities for atoms from He to Ne, and in Ref. [105] for the 2D case, 
where the SCE functional has been combined self-consistently with Kohn–Sham 
DFT to describe electrons confined in a parabolic potential at low density. 

The construction of the radial maps is implemented as in the 1D case. However, 
the computational complexity is now higher due to the evaluation of the reduced 
radial cost of Eq. (4.77), which requires an angular minimization for given radial 
distances. For the two-dimensional case treated in Ref. [105], where the number of 
relative angles to minimize was equal to .N−1, the procedure has been the following. 
For an initial non-degenerate radial configuration and given initial starting angles, 
the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used
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to find the closest local minimum. Then the radial position of the “first” electron 
was changed in small discrete steps, the radial positions of the remaining electrons 
were computed using the SGS maps, and the angles were optimized using the 
BFGS algorithm, with starting angles taken from the previous step. This procedure 
rests on the assumption that the optimal angles change continuously with the radial 
configuration. The starting angles for the initial radial configuration can be chosen 
by using simulated annealing as a global optimization strategy. It should be stressed 
that the angular minimization does not need to be performed for the whole set . Ngrid
of radial grid points. In fact, the N radial distances are periodic, as each circular 
shell .r ∈ [ai, ai+1] (with .ai = F−1

ρ (i), .i ∈ N), corresponds to the same physical 
situation,[127] simply describing a permutation of the set of distances occurring 
in the first shell .r ∈ [0, a1]. Thus, by keeping track of the minimizing angles, 
and by readapting the grid in every circular shell, it is possible to do the angular 
minimization only .Ngrid/N times rather than .Ngrid times. 

4.4.2 Methods Based on Linear Programming 

Direct discretization of the SIL variational principle (4.25) yields a linear program, 
which is numerically tractable when .N = 2. 

4.4.2.1 The N = 2 Case  

For two-electron systems in 3D with general density, Chen et al. [22] have  
implemented a method to directly solve the SIL variational principle via linear 
programming and extract the co-motion function and the SCE potential from the 
SIL solution. They used this approach to compute the co-motion function and the 
KS-SCE binding curve of the H. 2 molecule (see Figs. 4.9 and 4.14). 

One truncates .R
3 to a bounded domain, discretizes it into . � finite regions 

.e1, . . . , e�, and represents each element by a point . a� located at its barycenter. The 
single-particle density becomes a vector in . R� with components .ρ� = ∫

e�
ρ(r) dr. 

The two-particle density . π is represented by a matrix .γ = (γij ) ∈ R�×� with . γij =∫
ei

∫
ej

dπ(r1, r2), and the interaction .Vee(r1, r2) becomes a matrix . (cij ) ∈ R�×�

with .cij = 1
|ai−aj | . The SIL problem (4.25) then becomes 

. min
γ∈R�×�

∑

1≤i,j≤�

cij γij (4.104)

s/to
�∑

j=1

γij = ρi

2
, i = 1, . . . , �,

�∑

i=1

γij = ρj

2
, j ∈ {1, . . . , �},

γij ≥ 0.
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Fig. 4.9 Co-motion function for the H. 2 molecule [22]. The blue region—corresponding to the 
points in a half plane adjacent to the molecular axis with density between .0.04 and .0.08—is 
mapped to the green region in the opposite half plane. The black dots indicate the positions of 
the nuclei 

This is a standard linear programming problem of the form .minx f T x subject to 
.Ax = b, .xk ≥ 0, where x is the vector containing the entries of . γ . The solution 
can be obtained with a standard linear programming software (in [22], the authors 
used MOSEK). For a uniform discretization of the density, the number of degrees 
of freedom in the linear program would still be huge; instead an adaptive mesh was 
used in which all elements contain roughly the same amount of density, that is to say 
the mesh is much finer in the high-density region near the nuclei. (For automated 
generation of such a mesh, the finite element package PHK was used. See Chap. 10 
by Dai and Zhou for more information about this package.) The solution to (4.104) 
entails an approximation to the co-motion function f at the barycenters .{ai}�i=1, 
namely the barycenter of the image of . ai under the transport plan . γ : 

.f (�)(ai ) =
�∑

j=1

γij

ρi/2
aj i ∈ {1, . . . , �}, (4.105) 

where . γij can be regarded as the mass transported from . ai to . aj and the normaliza-
tion factor .ρi/2 guarantees that the barycentric weights sum to 1. Since, for .N = 2, 
the optimal N -point density . π for the continuum problem is unique and of SCE form 
(see (4.41) and Theorem 4.4), it follows that if the discretization is sufficiently fine,
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i.e. . � is large enough, .f (�) is a good approximation to f . The resulting co-motion 
function for the H. 2 molecule is depicted in Fig. 4.9. 

4.4.2.2 The N >  2 Case and the Curse of Dimension 

Since the above method uses a real-space discretization of the SIL variational 
principle whose unknown is the N -particle density on .R3N , it is limited in practice 
to .N = 2, to keep the number of computational degrees of freedom manageable. 
Indeed, for general N the N -particle density . π must be represented by an order-
N tensor .(γi1...iN ) ∈ R�×...×� with entries .γi1...iN = ∫

ei1×...×eiN
dπ(r1, . . . , rN). 

Since . π can be assumed to be symmetric (see Remark 4.2), . γ can be assumed to be 
symmetric under permutation of indices and Eq. (4.104) becomes 

. min
(γi1 ...iN

)∈R�×...×� symmetric

∑

1≤i1,...,iN≤�

Vee(ai1 , . . . , aiN ) γi1...iN (4.106)

s/to
�∑

i2,...,iN=1

γi1i2...i� = ρi1

N
, i1 ∈ {1, . . . , �},

γi1...iN ≥ 0.

This is still a linear program, but in . �N (or, using symmetry, .
(
N+�−1

�+1

)
) variables. For 

rigorous hardness results on problems of the form (4.106) with pairwise interaction 
see [4, 52]. 

4.4.3 Methods Based on the Dual Formulation 

Mendl and Lin [104] have implemented a method for solving the dual formulation 
of the SCE functional, Eqs. (4.55) and (4.53), and applied it to the Beryllium atom, 
a four-electron quantum wire in 1D, and a model trimer in 3D. In the 3D case, they 
parametrized the (unknown) Kantorovich potential by a pseudocharge, 

. v(r) =
∫

m(r′)
|r − r′| dr′,

with m given by a small number of Gaussians and satisfying .
∫

m = N − 1 to 
account for the asymptotic behavior .v(r) ∼ (N − 1)/|r| for large . |r| (see (4.66)). 
They showed that the constrained maximization in (4.55), (4.53) is equivalent to a
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nested pair of unconstrained optimizations, 

. V SCE
ee [ρ] = sup

v

(∫
v(r)ρ(r)dr + g[v]

)
with. (4.107) 

g[v] =  min 
(r1,...,rN )∈RdN

(
Vee(r1, .., rN) − 

N∑

i=1 

v(ri )
)
. (4.108) 

The inner optimization for given v was implemented by a quasi-Newton method 
and the outer optimization via a gradient-free simplex algorithm. For the Beryllium 
atom, using just two Gaussians for m resulted in a relative error of the SCE 
energy of only 1.6% compared to the SCE energy obtained via the SGS co-motion 
functions for radially symmetric densities [127] as described in Sect. 4.4.1.2. Also,  
the obtained SCE potential was in good agreement with the one based on the radial 
co-motion functions. 

As the authors point out, this approach is in practice limited to small systems, 
because the inner optimization is high-dimensional, nonlinear, and highly degener-
ate for the optimal v (recall that the set of minimizers is typically d-dimensional), 
and the outer optimization (4.107) is nonlinear and nonsmooth, and hence unsuitable 
for numerical optimization over a large number of degrees of freedom. 

4.4.4 Multi-Marginal Sinkhorn Algorithm 

In optimal transport, a standard computational method [35] is to pass to the entropic 
regularization (in our case, problem (4.89)) and solve the latter via the Sinkhorn 
algorithm. This is a simple and robust algorithm which goes back to Sinkhorn in 
the context of estimating Markov transition matrices [131]; it was introduced into 
two-marginal optimal transport in [34] and generalized to several marginals in [8]. 
The multi-marginal Sinkhorn algorithm with Coulomb cost was implemented by 
Benamou et al. [9] (see also [110]) to compute the SCE energy and potential for the 
He and Li atoms. 

The multi-marginal Sinkhorn algorithm goes as follows; we state it here in the 
continuous setting. One starts from the exact form (4.91) of the optimizer. One now 
allows the N entropic weight functions .aj (rj ) = aτ (rj ) in this form to be different 
(so as to be able to update them one by one). One updates them iteratively so as to 
enforce the j -th marginal constraint, (4.92) for j : 

.aj (rj )

∫

R
d(N−1)

∏

i �=j

ai(ri )e
−Vee(r1,...,rN)/τ

∏

i �=j

dri
!= ρ(rj )/N. (4.109)
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Solving for . aj yields an explicit formula for . aj in terms of the other . ai . Thus a 
single updating cycle consists of the N steps 

.anew
j (rj ) = ρ(rj )/N[∫

R
d(N−1)

∏
i<j anew

i (ri )
∏

i>j aold
i (ri )

×e−Vee(r1,...,rN )/τ
∏

i �=j dri

] , j = 1, . . . , N. (4.110) 

One then repeats the cycle until convergence. 
Convergence of the Sinkhorn algorithm is rigorously guaranteed under mild 

conditions on the interaction potential and the density (e.g., bounded potentials and 
.ρ log ρ ∈ L1 are sufficient); see [131] for the discretized .N = 2 case, [118] for the  
general .N = 2 case, and [40] for .N ≥ 2. The (linear) rate of convergence for the 
Sinkhorn algorithm was obtained in [23, 46] in the .N = 2 case, and in [15] for the  
multi-marginal Sinkhorn algorithm. For a two-electron example in dimension one 
computed with the Sinkhorn algorithm see Fig. 4.8. 

In [9], Benamou et al. demonstrated that for the He atom (and the choice . τ =
0.02) the algorithm yields an accurate approximation to the SCE energy and the SCE 
potential compared to the (in this case rigorously justified) SGS map-based solution; 
the relative error of the potential in the .L∞ norm was only 0.4%. Moreover, for the 
Li atom the numerical Sinkhorn solution exhibited very good qualitative agreement 
with the SGS solution. 

Some regularization is essential for the Sinkhorn approach. As . τ approaches 
zero—so that the entropic regularization .V τ

ee[ρ] from (4.89) approaches the exact 
SCE functional (4.26)—the convergence speed of the algorithm also goes to zero 
(see e.g. [35, 50]), and numerical instabilities can appear associated with the 
extremely small order .e−1/τ of the integrand (see e.g. [8]). 

The idea of regularization underlying the algorithm fits well into our DFT context 
as the optimal N -point density is smeared out anyway off the strongly interacting 
limit. However, a significant limitation from the point of view of DFT is the high-
dimensionality of the integral in (4.109), (4.110). For a discretization of the one-
body density by . � gridpoint values, the cost of a single integral evaluation for fixed 
. rj is O(.�N−1), limiting the method to small N . 

4.4.5 Towards Large N 

Very recently, some promising methods have been proposed which should, at least in 
principle, be suitable for tackling the case of large N . These have been demonstrated 
to show good performance on one-dimensional test examples where the Seidl 
solution from Sect. 4.3.11 is available for comparison. At the time of writing, it has 
yet to be demonstrated that any of these methods is capable of accurately computing 
the SCE energy for large N in three dimensions.
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4.4.5.1 Semidefinite Convex Relaxation 

The starting point of this method, introduced by Khoo and Ying [82], is the fact that 
the SIL problem 4.25 can, due to the fact that .Vee is a two-body potential (4.3), be  
reformulated as a minimization over N -representable 2-point probability measures: 

.V SCE
ee [ρ] = min

�∈P(Rd×Rd )
� N-representable, � 
→ρ

(
N

2

) ∫

R
d×Rd

wee(r − r′) d�(r, r′). (4.111) 

Here a two-point probability measure on .Rd × Rd is called N-representable if it 
is the 2-marginal of a symmetric N -point probability measure on . RdN . This two-
body formulation of the SCE functional was introduced in [51], and is a direct 
adaptation of the well-known two-body reduced density matrix formulation [26] 
of the Rayleigh–Ritz variational principle (4.6) to the strongly correlated limit of 
DFT. 

After discretization as described in Sect. 4.4.2.1, the two-point marginal becomes 
a matrix .� = (�ij ) ∈ R�×�, and N -representability means that . � is obtained from 
some symmetric tensor .(γi1...i� ) ∈ R�×...×� with nonnegative entries which sum to 
one by .�i1i2 = ∑

i3,...,iN
γi1i2i3...iN . 

The extreme points of the set of discrete N -representable 2-marginals have 
been determined explicitly [53] (see [16, 82] for generalizations to 3-marginals 
respectively general k-marginals). 

Theorem 4.29 ([53]) The set of extreme points of the set .R2 of discrete N -
representable 2-marginals is 

. Rext
2 =

{
N

N − 1
λλT − 1

N − 1
diag(λ) : λ ∈ R�, λi ≥ 0 ∀i, 1T λ=1, λi ∈ {0, 1

N
, 2

N
, . . .}

}
.

In particular, . R2 is the convex hull of .Rext
2 . 

Here . 1 denotes the vector in . R� with all components equal to 1. The discretized 
problem is then 

. min
�

∑

1≤i,j≤�

cij�ij (4.112)

s/to � ∈ R2, �1 = ρ

N
.
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Khoo and Ying [82] introduced the following convex relaxation of this problem in 
which . R2 is replaced by a slightly larger but simpler set: 

. min
�

∑

1≤i,j≤�

cij�ij (4.113)

s/to � ∈ R̃2 =
{

N

N − 1
� − 1

N − 1
diag(�1) : �ij ≥ 0∀i, j, � ≥ 0, 1T �1=1

}
,

�1 = ρ

N
.

Here .� ≥ 0 means matrix positivity of . �. 
It is clear that .R̃2 ⊃ R2, since . ̃R2 is convex and—by inspection—contains the set 

of extreme points of . R2 given in Theorem 4.29. A theoretical argument in support 
of the approximation (4.113) is: 

Theorem 4.30 ([82]) The extreme points of the true set .R2 of discrete N -
representable 2-marginals are still extreme points of . ̃R2. 

Intuitively this means that, at least near the extreme points of the exact set . R2 of 
N -representable 2-marginals, the relaxation is very tight. 

Viewed as a minimization over . �, (4.112) is a semidefinite program (SDP), i.e. 
a problem of minimizing a linear cost subject to finitely many linear equalities or 
inequalities and a matrix positivity constraint. It has been implemented in [82] using  
a uniform grid and the large-scale SDP solver SDPNAL+. For 1D problems with 
. N = 8, up to .� = 1600 gridpoints, and different one-body densities, the solutions 
reported in [82] are in excellent qualitative agreement with the pair density of the 
exact Seidl solution. The relative energy error compared to the unapproximated 
discrete problem (4.111) is estimated to be of the order of .10−2 to .10−4, depending 
on the choice of one-body density. Also, (4.113) is solved for 6 electrons in 2D with 
a Gaussian density on a .10 × 10 grid. 

Khoo and Ying [82] also give a dual formulation of the SDP (4.113) which 
yields an approximation to the Kantorovich potential. For 1D test problems with 
8 electrons and 200 gridpoints, a relative accuracy of .10−2 to .10−3 in the . L2 norm 
is reported compared to the exact potential obtained from the Seidl solution and 
Eq. (4.59). 

4.4.5.2 Langevin Dynamics with Moment Constraints 

This approach was proposed by Alfonsi et al. [1, 2]. The idea is to only discretize 
the density constraint, but not the N -point density, and then use a stochastic 
particle method to simulate the many-electron density. One performs a Galerkin 
(or “moment”) discretization of the marginal constraint (4.24) by requiring only a
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fixed number M of integral constraints, of the form 

. 

∫

R
Nd

ϕm(ri ) dγ (r1, . . . , rN) =
∫

R
d
ϕm dμ ∀i = 1, . . . , N, ∀m = 1, . . . , M,

(4.114) 

where .μ = ρ/N is the prescribed single-particle density and .ϕ1, . . . , ϕM are 
suitable single-particle basis functions on . Rd . Moreover since the marginal con-
straint has been relaxed, one introduces a mild additional constraint on the class of 
admissible N -electron densities . γ to prevent mass from escaping to infinity, 

.

∫

R
dN

N∑

i=1

θ(|ri |) dγ (r1, . . . , rN) ≤ A (4.115) 

for some nonnegative increasing function .θ : [0,∞) → [0,∞) with . θ(r) →
∞ (r → ∞) and some constant .A > 0. The SIL problem (4.25) is now 
approximated by: 

.Minimize
∫

R
Nd

Vee dγ over γ ∈ P(RNd) subject to (4.114) and (4.115). 
(4.116) 

Under suitable assumptions on the basis functions, and for A chosen sufficiently 
large, the minimum value of (4.116) can be shown to converge to the SCE energy 
.VSCE

ee [ρ] as the number M of basis functions tends to infinity [2]. The key property 
of (4.116) opening the door to numerical methods is the following. 

Theorem 4.31 ([2]) Assume .μ ∈ P(Rd), and suppose that the basis functions 
.ϕ1, .., ϕM : Rd → R are continuous, belong to .L1(dμ), and satisfy the growth 
bound .|ϕm(r)| ≤ const (1+θ(|r|))s for some .s ∈ (0, 1). Assume that . Vee : RdN →
R ∪ {+∞} is nonnegative and .

∫
Veedγ is finite for some . γ satisfying (4.114), and 

that A is sufficiently large. Then there exists a minimizer of (4.116) of the form 
.dγ (r1, . . . , rN) = ∑K

ν=1 ανSNδ(r1 − a(ν)
1 ) . . . δ(rN − a(ν)

N ) for some .K ≤ M + 2, 

some coefficients .αν ≥ 0, and some .a(ν)
i ∈ Rd . 

Thus a sparse ansatz for the many-electron density consisting of . K ≤ M + 2
symmetrized Dirac measures (where M is the number of constraints discretizing the 
marginal condition) is sufficient. This result generalizes Theorem 4.23 from discrete 
problems to semi-discrete problems with continuous state space and discretized 
marginal constraint. 

In order to numerically solve (4.116), in [1] a stochastic particle method in 
continuous state space has been implemented. More precisely, the authors use 
constrained overdamped Langevin dynamics in the potential . Vee, which is a natural 
stochastic evolution equation for minimizing . Vee, applied to weighted sums of K 
symmetrized Dirac measures moving on the constraint manifold (4.114). For 5 elec-
trons in a one-dimensional interval and the regularized Coulomb interaction (4.103)
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with . a = 0.1, up to .M = 40 basis functions taken to be Legendre polynomials, 
and superpositions of up to .K = 10,000 symmetrized Dirac measures, the method 
achieves good agreement with the Seidl solution described in Sect. 4.3.11. The  
implementation uses an iterative method to maintain the constraints (which are 
nonlinear in the particle positions), as well as judicious choices of the time steps, 
temperature profile, and numbers of symmetrized Diracs to balance accuracy and 
computational efficiency. 

An attractive feature of this method besides its feasibility for large numbers of 
electrons is the fact that space is not discretized. In [1] simulations are reported for 
100 electrons in three dimensions subject to 52 marginal constraints, again using 
superpositions of 10,000 symmetrized Dirac measures. At the time of writing, it 
remains an interesting open question to assess, in such situations, the accuracy of 
the model (4.116) and its numerical solutions. 

4.4.5.3 Genetic Column Generation 

This method was proposed recently by Friesecke et al. [52]. It directly solves the 
discretized SIL problem (4.106), by combining the sparse but exact quasi-SCE or 
quasi-Monge ansatz (see Theorem 4.23), the method of column generation from 
discrete optimization, and basic ideas from machine learning. 

The idea is to alternate between solving the SIL problem on a small but otherwise 
unconstrained subset of the many-electron configuration space, and updating the 
subset based on the (primal and dual) SIL solution. Recall that after discretization, 
the many-electron density becomes a density . γ on . XN , where .X = {a1, . . . , a�} is 
a set of discretization points (e.g., a grid) for the single-electron configuration space 
. Rd . One now starts from the quasi-SCE or quasi-Monge ansatz in the form (4.88), 
which suffices to solve the discrete SIL problem (4.106) exactly (see Theorem 4.23), 
but—for computational reasons—allows a slightly larger number of delta functions: 

.γ (r1, . . . , rN) =
�′∑

ν=1

ανSNδ(r1 −r(ν)
1 ) . . . δ(rN −r(ν)

N ), � ≤ �′ ≤ β�. (4.117) 

Here the .r(ν) = (r(ν)
1 , . . . , r(ν)

N ) are arbitrary N -point configurations in .XN and 
.β > 1 is a hyperparameter (taken to be 5 in [52]) which limits the number of 
N -point configurations to .O(�) instead of the naively required .O(�N). To achieve 
a unique correspondence between symmetrized Diracs and N -point configurations 
one restricts the .r(ν) to the sector .XN

sym = {(ai1 , . . . , aiN ) ∈ XN : i1 ≤ . . . ≤ iN }, 
making the expansion coefficients . αν in (4.117) unique. 

The ansatz (4.117) involves two sets of degrees of freedom, the subset . 
 =
{r(1), . . . , r(�′)} of the many-electron configuration space and the coefficient vector 
.(α1, . . . , α�′), which are updated alternatingly. For fixed . 
, the coefficient vector is 
governed by the SIL problem (4.106) restricted to the ansatz (4.117), which reads,
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using that .SNδ(r1 − r(ν)
1 ) . . . δ(rN − r(ν)

N ) has single-particle density . ρ(ν)(r) =
∑N

i=1 δ(r − r(ν)
i ), 

. min
α∈R�′

�′∑

ν=1

ανVee(rν)) s/to
�′∑

ν=1

ανρ
(ν)(ai ) = ρi

N
, i ∈ {1, . . . , �}, αν ≥ 0.

(4.118) 

This is just a small linear program with an .�×O(�) constraint matrix. Updating the 
set . 
 is done in a simple but subtle manner, as standard methods would incur the 
curse of dimension (see below). One also uses the dual problem 

. max
u :X→R

�∑

i=1

u(ai )ρi s/to u(r(ν)
1 ) + · · · + u(r(ν)

N ) ≤ Vee(r(ν)) ∀ν ∈ {1, . . . , �′},
(4.119) 

whose solution u is an approximation to the Kantorovich potential. 
An updating cycle in the genetic column generation (GenCol) method goes as 

follows: 

1. Given a set .
 ⊂ XN
sym of N -particle configurations, update the primal solution . α

and the dual solution u by solving (4.118) and (4.119). 
2. Given the updates .αnew and .unew, update . 
 by the following genetic learning 

method: 

. – pick a random “parent” configuration r(ν) ∈ 
 satisfying αnew
ν > 0;

– create a random “child” r∗ ∈ XN
sym by moving one electron position to

a nearest neighbor;
– repeat these steps until unew(r∗

1) + · · · + unew(r∗
N) > Vee(r∗)

and set 
new = 
 ∪ {r∗}. (4.120) 

Steps 1. and 2. are iterated until convergence, with the oldest configurations which 
do not contribute to the current optimal plan (i.e. satisfy .αnew

ν = 0) being deleted 
from . 
 whenever its size . �′ exceeds the maximum allowed size . β�. 

The simple but powerful genetic learning aspect of the search rule in (4.120) is 
that only “successful” N -electron configurations in . 
 (i.e. ones that contribute to 
the current optimal plan (4.117) with a nonzero coefficient . αν) are allowed to bear 
offspring. Numerical observations and theoretical considerations show that this is 
essential for overcoming the curse of dimension. An unbiased random search of 
new configurations, or the updating step in the classical column generation method
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of solving the so-called pricing problem,9 would merely turn the curse of dimension 
with respect to the size of the state space into a curse of dimension with respect to 
the number of search steps. 

The rationale behind the acceptance criterion in (4.120) is that any new config-
uration . r∗ satisfying it represents a constraint of the full dual problem (Eq. (4.119) 
with the .r(ν) being replaced by all configurations in .XN

sym) which the current dual 
solution .unew violates. Adding this configuration to the set . 
 “cuts off” .unew from 
the optimization domain of the dual problem, yielding a new dual solution and an 
energy decrease. For a rigorous justification see [52]. 

Figure 4.10, taken from [52], shows the solution of the SIL problem (4.25) 
computed by the GenCol algorithm for 10 electrons in a 1D interval discretized 
by 100 gridpoints. In this example, the grid spacing is normalized to 1, the density 
is taken to be .ρ(x) = const(0.2 + sin2( x

�+1 )), and the interaction is the soft 
Coulomb potential (4.102) with .a = 0.1. With the initial set of many-electron 
configurations chosen randomly, the algorithm always found the exact Seidl solution 
(see Sect. 4.3.11) of the discretized problem to machine precision using less than 
7000 iterations and less than 5 samples per iteration. This means that only a tiny 
fraction of the configuration space was accessed. The energy decreased steadily at 
an exponential rate. 

Tests reported in [52] on larger 1D systems with up to .N = 30 electrons 
on 120 grid points (corresponding to a space of N -point densities of dimension 
.�N ≈ 2.4 × 1062) show only a slow polynomial growth in N of the number of 
iterations required to find the exact solution to machine precision, with the average 
number of samples needed per iteration to satisfy the acceptance criterion remaining 
approximately constant. 

Apart from its simplicity and efficiency in high dimensions, attractive features 
of the genetic column generation method are that after discretization no further 
approximations are made (and the discrete SIL problem is solved accurately), and 
that the method also provides the Kantorovich potential for use within Kohn–Sham 
DFT. 

Tests for accurately discretized three-dimensional densities are not yet available 
at the time of writing. 

4.4.6 Approximations 

As explained, there are presently no efficient algorithms to solve the SCE problem 
in an exact or very accurate way for the general three-dimensional case. In 
the usual spirit of DFT, several approximations for the functional .VSCE

ee [ρ] have

9 which consists in our case in finding a configuration . r∗ which maximizes the difference 
.unew(r∗

1) + · · · + unew(r∗
N) − Vee(r∗). 
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Fig. 4.10 Solution to the SIL problem (4.25) for 10 electrons in 1D with the GenCol algorithm 
[52]. Top: prescribed density. Left: Evolution under GenCol of the N -electron density from a 
random initial state, visualized via its two-point marginal (pair density). Gridpoints with nonzero 
values (i.e., “successful” configurations) are shown in blue, with larger markers indicating higher 
values. Right: Evolution of the Kantorovich potential. The final N -point density recovers Seidl’s 
SCE state for the discretized problem with machine precision
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been proposed and used in combination with Kohn–Sham DFT. We review the 
approximations in this section, and their use within Kohn–Sham DFT in Sect. 4.5. 

4.4.6.1 Gradient Expansion: Point-Charge-Plus-Continuum Model (PC) 

The first gradient expansion approximation (GEA) for the indirect energy functional 
.W∞[ρ] = VSCE

ee [ρ] − U [ρ] has been proposed by Seidl et al. [128], and it is called 
the point-charge-plus continuum (PC) model, 

.WPC∞ [ρ] =
∫

dr
[
Aρ(r)4/3 + B

|∇ρ(r)|2
ρ(r)4/3

]
, (4.121) 

where .A = − 9
10 ( 4π

3 )1/3 and .B = 3
350 ( 3

4π
)1/3. The model is built from the 

physical interpretation of .W∞[ρ] as the electrostatic energy of a system of perfectly 
correlated electrons with density . ρ inside a classical background with the same 
charge density . ρ of opposite sign [128]. Notice that the electrons are not allowed to 
relax in this fictitious external potential, as they are kept in the SCE state with the 
prescribed density. Only when the density is uniform is the energy of the SCE state 
the same as the one we would obtain by letting the electrons relax in the positive 
background external potential [96]. The idea of the PC model is that when the 
density is slowly varying the energy should be well approximated by surrounding 
each electron by a PC cell (given by the combined effect of the background and the 
remaining electrons) that neutralizes its charge and it is such that the electron plus 
its cell have zero dipole moment [128]. 

The PC approximation works rather well: for example, for the atomic densities 
from He to Ne, the values .WPC∞ [ρ] agree within 1% with the values obtained by 
using the radial co-motion functions (maps) described in Sect. 4.3.12, as shown in  
Table I of Ref. [127]. This is quite remarkable as, usually, gradient expansions for 
the exchange-correlation functionals fail in providing accurate quantitative results. 

4.4.6.2 Generalized Gradient Approximations: The Modified PC Model 

Although quantitatively accurate for the SIL energy, the main drawback of the PC 
model is that its functional derivative, 

.vPC
xc (r) = δWPC∞ [ρ]

δρ(r)
, (4.122) 

diverges to .−∞ in the tail of atomic and molecular densities [45], making a self-
consistent Kohn–Sham calculation impossible. Moreover, the PC model fails for 
quasi-2D and quasi-1D systems [31] .
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To overcome these problems, Constantin [31] has proposed a generalized 
gradient approximation (GGA) for .W∞[ρ], called the modified PC model (mPC), 
which reads 

. WmPC∞ [ρ] = A

∫
drρ(r)4/3 1 + a s(r)2

1 + (a + 0.14) s(r)2 ,

s(r) = |∇ρ(r)|
2(3π)1/3ρ(r)4/3 , (4.123) 

where A has the same value as in the original PC model, and . a = 2. This  
approximation is less accurate for the SIL of atomic densities with respect to 
the original PC model (with errors around 9–10%), but has the advantage of a 
well-behaved functional derivative, and of achieving a physical description of the 
crossover from three to two dimensions. 

4.4.6.3 Approximations with Some Non-Locality: The Non-local Radius 
(NLR) and the Shell Model 

The PC and mPC are semilocal approximations, while, as we have seen, the exact 
SIL physics has an extreme non-local dependence on the density. Approximations 
that retain some (albeit limited) non-locality are the non-local radius (NLR) [140] 
and the shell models [6]. Both approximations use as key ingredient the spherically 
averaged density .ρ̃(r, u) around a given position . r, obtained by integrating out the 
angular dependence of . u, 

.ρ̃(r, u) =
∫

ρ(r + u)
d̂u
4π

, (4.124) 

and, in analogy with the SCE structure for spherical densities conjectured in 
Ref. [127] and illustrated in Sect. 4.3.12, its cumulant 

.Ne(r, u) =
∫ u

0
4π x2 ρ̃(r, x) dx. (4.125) 

In the NLR model [140] the functional .W∞[ρ] is approximated as 

.WNLR∞ [ρ] = −
∫

dr ρ(r)
∫ R(r)

0
2π ρ̃(r, u) u du, (4.126) 

where the radius .R(r) is defined by the condition that the underlying exchange-
correlation hole be normalized: 

.Ne(r, R(r)) = 1. (4.127)
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This simple approximation is less accurate than the PC and mPC models for the case 
of the uniform electron gas, giving a too high energy. For non-uniform densities, the 
NLR has the advantage, with respect to the PC and mPC models, of being exact for 
one-electron systems. For atomic densities, NLR makes errors, with respect to the 
SCE results of Ref. [127], of the order of 8–9% [140]. 

The shell model [6] substantially improves the NLR approximation, by making it 
exact for a uniform density, and reducing its error with respect to the SCE results for 
atomic densities by almost a factor of 10. While the NLR model approximates the 
exchange-correlation hole with a sphere depleting one electron from the spherically 
averaged density, the shell model adds a single positive oscillation, and reads 

. W shell∞ [ρ] =
∫

dr ρ(r) 2π

(
−

∫ us(r)

0
ρ̃(r, u) u du +

∫ uc(r)

us(r)
ρ̃(r, u) u du

)
,

(4.128) 

where for all . r we have .us = 0.849488 uc, which is the condition needed to make 
the model exact for a uniform density. The value of .uc(r) is then obtained again by 
the normalization condition, 

.2 Ne(r, 0.849488 uc(r)) − Ne(r, uc(r)) = 1. (4.129) 

4.5 Kohn–Sham Combined with the Strong-Interaction 
Limit 

4.5.1 Kohn–Sham with the SCE Functional (KS SCE) 

The Kohn–Sham scheme with the SCE functional (KS SCE) was first proposed and 
implemented in [100], and corresponds to a crude, but well-defined approximation 
for the HK functional, 

.FKSSCE[ρ] = Ts[ρ] + VSCE
ee [ρ], (4.130) 

in which we replace the minimum of the sum of kinetic energy and electron-electron 
repulsion at fixed density, with the sum of the two minima. As such, the KS SCE 
will always provide a lower bound for the HK functional. When implemented self-
consistently, the KS SCE scheme yields the usual KS equations with the Hartree-
exchange-correlation potential given by the SCE or Kantorovich potential (written 
below for simplicity for a closed-shell system), 

. − 1

2
∇2ϕi(r) + (vSCE(r, [ρ]) + vne(r)) ϕi(r)=εi ϕi(r),

ρ(r)=2
N/2∑

i=1

|ϕi(r)|2, (4.131)
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where the SCE potential is equal to 

.vSCE(r, [ρ]) = u(r, [ρ]) + C[ρ], (4.132) 

with .u(r, [ρ]) the maximizer in Eq. (4.55), and the constant .C[ρ] a shift that ensures 
.limr→∞ vSCE(r) = 0, see Eq. (4.64). This shift is the same, in the .λ → ∞ limit of 
the density-fixed adiabatic connection, as the one introduced by Levy and Zahariev 
[94, 139]. If we want to compute the ground-state density and the ground state 
energy only, one could better work with u instead of .vSCE, as with the former 
the energy becomes simply [22, 94, 139] the sum of the occupied orbital energies, 
.E0 = 2

∑N/2
i=1 εi . The shift is needed if we want to estimate the ionisation potential 

.I = EN−1
0 − EN

0 from the highest occupied molecular orbital energy (HOMO), 
as .I = −εN/2 holds only when the exchange-correlation potential goes to zero far 
from the barycentre of nuclear charge [3, 93]. For further discussion of this point 
see Chap. 1 by Toulouse in this volume. 

4.5.1.1 1D Case 

The self-consistent KS SCE equations have been solved for 1D systems with 
the interaction .vwire

ee (x) of Eq. (4.101) when the external potential is harmonic, 
.vne(x) = 1

2ω2 x2, [72, 100, 101], and with the soft Coulomb interaction .vsoft
ee (x) of 

Eq. (4.102) for model 1D atoms and molecules with ‘nuclei’ that attract the electrons 
with the same soft Coulomb potential [102]. At each KS iteration, the 1D co-motion 
functions [123] were computed numerically as explained in Sect. 4.4.1.1, and the 
potential .vSCE(x, [ρ]) was obtained by simply integrating the force equation 

.v′
SCE(x, [ρ]) =

N∑

i=2

w′(|x − fi(x)|)sgn(x − fi(x)), (4.133) 

with boundary condition .vSCE(x → ±∞, [ρ]) = 0, and where .w(x) is the chosen 
1D interaction (wire or soft Coulomb, see Sect. 4.4.1.1). In addition, at low density 
the highest occupied KS SCE eigenvalue gives a very accurate ionization energy of 
the system [101]. 

Harmonic External Potential 

In Fig. 4.11 we show the self-consistent KS SCE densities for .N = 4 electrons 
interacting with .vwire

ee (x) of Eq. (4.101) when the external potential is harmonic, 
using scaled units in terms of .L = 2 ω−1/2, compared with accurate many-body 
results from configuration interaction (CI) and with KS within the local density 
approximation (LDA), provided for this interaction in Ref. [18]. We see that, as 
the system is driven to low density by reducing the strength of the harmonic
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Fig. 4.11 Left: self-consistent KS SCE densities for .N = 4 electrons interacting with . vwire
ee (x)

of Eq. (4.101) when the external potential is harmonic, .vne(x) = 1
2 ω2 x2, compared with very 

accurate configuration interaction results (CI) and with KS LDA. Right: the total KS potential at 
self consistency, .vKS = vne + vSCE, for the most correlated case. The horizontal lines are the two 
eigenvalues of the occupied KS SCE orbitals. Results are in scaled units, where .L = 2 ω−1/2, and  
are taken from Ref. [101] 

confinement (large L), the exact many-body solution undergoes a so-called “. 2kF →
4kF ” transition, in which the number of peaks in the density is doubled. At high 
density, in fact, the number of peaks is dictated by the number of occupied orbitals, 
.N/2 for a closed shell system. At low density, we have an incipient Wigner 
molecular structure, in which the electrons are well separated. Notice that with 
the Coulomb interaction this Wigner molecular phase exhibits different properties 
than the simpler case of very short-range interactions, in which the physics can be 
captured by making the system spin-polarized (i.e. by occupying N orbitals instead 
of .N/2). This is clearly illustrated in Ref. [142]. 

It is well-known that the local and semilocal approximations to the XC func-
tional, as well as exact exchange, are not able to capture this “.2kF → 4kF ” 
transition [134, 135] without introducing artificial symmetry breaking. This is 
also clearly shown by the KS LDA results of Fig. 4.11, which become very 
close in this limit to the Thomas–Fermi result (minus the external potential in 
the classically allowed region) predicting a too delocalized density. The KS SCE 
self-consistent density, although not quantitatively very accurate, has the correct 
qualitative behavior, with two peaks at high density and four at low density, and with 
the correct extension. The KS SCE HOMO energy is also very close to the exact 
many-body ionisation potential [100, 101]. In the right panel of Fig. 4.11 we show 
the total KS potential at self consistency, .vKS = vne + vSCE, for the most correlated 
case. The horizontal lines are the two occupied KS SCE eigenvalues. We see that 
the SCE functional is able to self-consistently build barriers that create classically 
forbidden regions inside the harmonic trap. Classically forbidden regions for the KS
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orbitals created by the Hartree-exchange-correlation potential seem to play a crucial 
role in describing strong correlation within KS DFT [12, 75, 144]. 

Model 1D Chemistry with Soft Coulomb Potential 

In Ref. [102] the KS SCE method has been tested for model chemical systems in 
1D, consisting of “nuclei” and electrons attracting each other with the soft-Coulomb 
potential (for the use of these 1D models to test DFT approximations, see also 
Refs. [74, 141]). While in the harmonic external potential we can drive the system 
to low density where the SCE becomes a very good approximation to the exact KS 
exchange-correlation functional, chemical systems (bound by the Coulomb external 
potential) are never in this regime. For this reason, KS SCE does not in general yield 
accurate results, with total energies that are way too low. An exception seems to be 
the good agreement between the eigenvalue of the highest occupied KS SCE orbital 
and the many-body chemical potential, as shown in Table 2 of Ref. [102]. 

4.5.1.2 2D Case 

The circularly-symmetric 2D case of electrons interacting with the .1/r repulsion 
in the harmonic external potential has been studied with KS SCE in Ref. [105], 
using the SGS radial co-motion functions and the reduced radial cost of Eq. (4.78) 
implemented as described in Sect. 4.4.1.2. As in 1D, the aim is to model electrons 
strongly confined in one direction, found, for example, at the interface of semicon-
ductor etherostructures. For this reason, the interaction remains the same as the 3D 
Coulomb one. 

As discussed in Sect. 4.3.12, the SGS state defined by (4.79)–(4.80) is not 
guaranteed to yield the absolute minimum for the electron-electron interaction in a 
given radial density .ρ(r). Nonetheless, it can be proven [125] that, for a spherically-
symmetric density, if we reduce the admissible class of maps .Tρ in the SCE 
functional (4.37) to a class .TSGS

ρ ⊂ Tρ of maps given by the SGS ansatz defined in 

Eqs. (4.79)–(4.80) as an approximation for .VSCE
ee [ρ], even when the SGS maps are 

not optimal the functional derivative of this approximate .VSCE
ee [ρ] with respect to 

.ρ(r) still satisfies the force equation (written using the notation of Eq. (4.59)), 

.∇vSGS(r) = −
N∑

i=2

r − fSGS
i (r)

|r − fSGS
i (r)|3 , (4.134) 

which we can integrate to obtain a potential .vSGS(r). In other words, the SGS maps 
provide a well-defined approximation to the exact SCE functional, with an easy to 
evaluate functional derivative, which, in turn, can be used in the KS equations. 

In Fig. 4.12 we show the resulting KS SCE self-consistent radial density for 
.N = 3 electrons for two low-density cases, compared with accurate Quantum
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Fig. 4.12 Self-consistent radial KS SCE densities .ρ(r) for .N = 3 electrons in 2D, with external 
potential .vne(r) = 1

2 ω2 r2 [105], compared with accurate Quantum Monte Carlo (QMC) results 
[61, 73]. The KS SCE densities are shown for both the unpolarized (2 orbitals, of which only the 
lowest is doubly occupied) and spin polarized (3 different singly occupied KS orbitals) case 

Monte Carlo (QMC) results from Refs. [61, 73]. The KS SCE calculations have been 
done for both the unpolarized case (2 KS orbitals, of which only the lowest is doubly 
occupied) and the spin-polarized case (3 different singly occupied KS orbitals). We 
see that the KS SCE densities are very close to the QMC ones, predicting the right 
shell structure with one peak. Total energies are in agreement with QMC within 
.∼ 4 − 6% [105]. Notice that at such low densities it is very hard to even obtain 
converged results using KS with the local-spin density (LSD) approximation. We 
thus see that even if the SGS maps are not optimal for these densities (see [125]), 
they yield very good results when used in the self-consistent KS equations at low 
density. However, we have to mention that QMC predicts that at such small . ω’s the 
ground state is spin-polarized, while in KS SCE the unpolarized case always yields 
the lowest energy, due to the lack of any spin dependence in the SCE functional. 

Figure 4.13 shows the self-consistent KS SCE total potential and density for 
.N = 10 electrons (spin unpolarized) [105]. The green dashed curve is the energy 
of the highest occupied KS orbital. We clearly see, as in the 1D case of Fig. 4.11, 
that when the system is driven to low-density (small . ω case), KS SCE is able to 
self-consistently create classically forbidden regions inside the trap. 

4.5.1.3 3D Case 

KS SCE has been tested on the anions of the He isoelectronic series [106] and on 
the dissociation curve of the H. 2 molecule [22]. 

Anions of the He Isoelectronic Series 

In this case, i.e., .N = 2 electrons with .vne(r) = −Z
r

, where Z is lowered 
until the system can no longer bind two particles, the co-motion function and the 
SCE potential are simply built following the original work of Seidl [123] (see
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Fig. 4.13 Self-consistent KS SCE radial potential .vKS(r) = vSCE(r) + 1
2 ω2r2 (blue solid line) 

and radial densities (red dashed line) for a strongly and weakly correlated case (top and bottom, 
respectively) of a 2D system composed of .N = 10 electrons inside a circularly symmetric 
harmonic trap. The green dashed horizontal lines correspond to the energies of the highest occupied 
KS orbital. Notice the presence of classically forbidden regions inside the trap in the strongly 
correlated case (.ω = 0.001) 

Example 4.20), which is a special case of the SGS maps. While very accurate 
wavefunction results predict [47] that one electron is lost by the system at a 
critical nuclear charge .Zexact

crit ≈ 0.911, KS SCE binds two electrons down to 
.ZKSSCE

crit ≈ 0.7307 [106]. This is because in the KS SCE case the two electrons 
can get much closer to the nucleus by perfectly avoiding each other, without raising 
the kinetic energy too much, which is only treated within KS. 

The H2 Molecule 

The dissociation curve of the H. 2 molecule has been computed within KS SCE in 
Ref. [22]. The result is shown in Fig. 4.14. To compute the self-consistent density 
and energy, an accurate adaptive three-dimensional finite element discretization was
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Fig. 4.14 Right: Dissociation curve of H. 2 in KS SCE [22], that is, energy of H. 2 minus twice the 
energy of the isolated H atom. For comparison, the KS LDA curve computed on the same mesh 
and the exact curve from Ref. [86] are also shown. Note that KS SCE, unlike the local density 
approximation, dissociates H. 2 correctly. Left: Corresponding self-consistent KS SCE density and 
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used and the SIL problem was solved using linear programming, as described in 
Sect. 4.4.2.1. The co-motion function for H. 2 was then obtained from the SIL density 
via Eq. (4.105), and the SCE potential via the force Eqs. (4.59) and (4.64). 

Not surprisingly, KS SCE predicts a binding energy that is way too low. A 
remarkable feature, though, is the ability of KS SCE to correctly dissociate the H. 2
molecule, i.e., the molecular energy tends to twice the energy of the isolated H atom 
as the internuclear distance R becomes very large (see [22] for a rigorous proof). 
Local and semilocal approximations to the XC functionals are unable to do that, 
and exact exchange (or Hartree–Fock) perform even worse, unless we allow spin-
symmetry breaking. Indeed, the extremely stretched H. 2 molecule is often regarded 
as a severe test for XC functionals to check whether they are able to describe strong 
(or “static”) correlation [24]. 

Although the SCE functional yields the exact energy when .R → ∞, we see that 
at large but finite R the KS SCE curve immediately start to deviate from the exact 
one. We can understand this error by making the following simple analysis. With the 
internuclear vector . R directed along the x-axis, we can expand the electron-electron 
interaction at large R, which, without considering one-body terms and neglecting 
higher orders in .R−1 yields 

. 
1√

(x1 − x2 − R)2 + (y1 − y2)2 + (z1 − z2)2

∼ 2(x1 − x2)
2 − (y1 − y2)

2 − (z1 − z2)
2

R3 , (4.135) 

where the origins of . r1 and . r2 are placed on their respective nuclei. The SCE 
functional for large R then corresponds to the minimization of this interaction at
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Fig. 4.15 When the distance R between the two atoms of the H. 2 molecule gets very large, the 
optimal map describes the physics of perfectly coupled dipoles. The figure shows four pairs of 
electronic positions .{r, f(r)}, labeled with the same letter A,B,C,D, with respect to the two positive 
nuclei 

fixed one-body density (hence, the neglect of one-body terms that will not affect the 
minimizer). The SCE problem in this limit reduces then to the attractive harmonic 
cost [56] in the bond (x) direction and to the repulsive harmonic cost [42] in the two  
directions perpendicular to the bond axis. For large R, the optimal map will then 
approach the solution 

.fx(r) = x, fy(r) = −y, fz(r) = −z, (4.136) 

which corresponds to perfectly coupled dipoles (see Fig. 4.15). Such maps will give 
a finite (negative) expectation value for the r.h.s. of Eq. (4.135) even when the total 
density of the molecule is given by the sum of two spherical atomic densities, 
yielding an interaction energy that is too attractive, decaying as .∼ R−3 instead of 
the exact .∼ R−6. What is missing in the KS SCE approach is the raising in kinetic 
energy associated with the perfectly correlated dipoles of Fig. 4.15. A strategy to 
include the raise in kinetic energy in this asymptotic large-R regime is described in 
Ref. [88]. 

4.5.2 Interaction Strength Interpolation (ISI) Functionals 

Another way to use the SIL in KS DFT is the interaction strength interpolation (ISI) 
construction, originally proposed by Seidl, Perdew and Levy (SPL) [130]. ISI is 
essentially the extension to non-uniform densities of Wigner’s original idea [143] of  
approximating the energy of the uniform electron gas by interpolating between its 
high- and low-density asymptotics, which, by scaling, correspond to the weak- and 
strong-interaction limits, respectively.
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The starting point is to use the Hellmann–Feynman theorem to write the 
exchange-correlation energy as an integral over the coupling-strength parameter . λ
of (4.17)10 

.Exc[ρ] =
∫ 1

0
Wλ[ρ], (4.137) 

where 

.Wλ[ρ] = Vee[ψλ[ρ]] − U [ρ], (4.138) 

with .ψλ[ρ] the minimizer in (4.17). The idea is then to construct approximations 
for the adiabatic connection integrand .Wλ[ρ] by interpolating between the . λ → 0
asymptotic expansion, 

.Wλ→0 ∼ Ex + 2 λ EGL2
c + · · · , (4.139) 

with . Ex the exchange energy and .EGL2
c the second-order Görling-Levy perturbation 

theory correlation energy [69], and the large-. λ limit provided by the SIL, and 
possibly by the conjectured next leading term of Eq. (4.47), 

.Wλ→∞ ∼ W∞[ρ] + F ZPE[ρ]
2
√

λ
+ · · · . (4.140) 

For example, SPL [130] proposed the following simple form to interpolate between 
the two limits, without using the term with .F ZPE[ρ]: 

.WSPL
λ = W∞ + Ex − W∞√

1 + 2λχ
, (4.141) 

with 

.χ = 2EGL2
c

W∞ − Ex
. (4.142) 

The SPL XC functional then reads 

.ESPL
xc = (Ex − W∞)

[√
1 + 2χ − 1 − χ

χ

]
+ Ex. (4.143)

10 For further discussion see also Chap. 1 by Toulouse in this volume. 
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Several other interpolating functions that may or may not include .F ZPE[ρ] have 
been proposed in the literature, [43, 68, 98, 128, 129] and are reported, for example, 
in the appendix of Ref. [87]. 

4.5.2.1 Global Interpolations 

Interpolations such as the one of Eq. (4.141) have been implemented and tested 
on several chemical systems by using for the .λ → ∞ limit the PC model of 
Sect. 4.4.6.1 (and its extension [128] to .F ZPE[ρ] when needed). In a practical 
calculation, KS orbitals with a given approximate semilocal or hybrid functional 
are used to compute the density . ρ, the exchange energy . Ex, and the second-order 
energy .EGL2

c , which are then fed into formulas such as (4.143) to obtain improved 
energies. The result is thus dependent on the chosen starting approximate functional 
used to generate the KS orbitals. 

A basic problem of these global (in the sense that they are done on quantities 
that have been already integrated over all space) interpolations is the violation of 
size-consistency, i.e., if we take two different systems A and B that do not interact 
with each other, it is easy to verify from (4.143) that, in general, 

.ESPL
xc (A + B) �= ESPL

xc (A) + ESPL
xc (B), (4.144) 

an issue shared by all the other interpolation formulas proposed in the literature [25]. 
Notice that size-consistency of approximate electronic-structure methods is a very 
delicate issue when A and/or B have a degenerate ground state [65, 120]. Here we 
stress that even when degeneracy is not present, the fact that the input ingredients 
(. Ex, .EGL2

c and .W∞) enter in a non-linear way in the ISI formulas introduces anyway 
a size-consistency error. However, this error can be easily corrected [137]. In fact, 
the reason why size-consistency is crucial in chemistry is that we are interested in 
interaction energies rather than total energies. All we need to do is to set the limit 
of a molecular dissociation curve (when A and B are infinitely far apart) at the 
value given by the left-hand side of Eq. (4.144) rather than the one given by the 
right-hand side. Notice that both sides of this equation can be evaluated at exactly 
the same computational cost, as all that is needed is the input ingredients of the 
fragments A and B [137]. With this size-consistency correction it is possible to 
extract meaningful interaction energies from the ISI functionals [137]. 

The ISI functionals have been tested on several chemical data sets and systems 
[44, 62, 137]. They have been found to work reasonably well for interaction energies 
(especially of non-covalent systems) when Hartree–Fock orbitals (rather than KS 
ones) are used as input. This observation has triggered the study of the strong-
interaction limit in Hartree–Fock theory [37, 126], which, in turn, has led to new 
interpolation schemes in this framework which are able to give very accurate results 
for a large variety of non-covalent interaction energies, ranging from small to 
medium-large systems [36].
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If one wants to overcome the dependence on the input orbitals, one should 
evaluate the energy using the ISI functionals within a fully self-consistent KS 
scheme. For this, their functional derivative with respect to the density is needed, 
which is challenging due to the presence of second-order perturbation theory. 
Nonetheless, first attempts in the computation of the ISI functional derivatives have 
been reported in Refs. [45, 132], and self-consistent calculations are likely to appear 
soon. 

4.5.2.2 Local Interpolations 

Another possibility is to build the interpolations locally, in each point of space, by 
defining an energy density .wλ(r; [ρ]) for the coupling-constant integrand .Wλ[ρ] of 
Eq. (4.138), writing .Exc[ρ] as 

.Exc[ρ] =
∫

dr ρ(r)
∫ 1

0
wλ(r; [ρ]) dλ. (4.145) 

Energy densities are obviously not uniquely defined, and the only important 
requirement here is to use local quantities defined in the same way at weak and 
strong coupling. Some different choices for energy densities in the .λ-interpolation 
context have been analyzed in [139], where it has been found that the electrostatic 
potential of the exchange-correlation hole11 

.hλ
xc(r1, r2) seems to be the most 

suitable , 

.wλ(r) = 1

2

∫
hλ

xc(r, r2)

|r − r2| dr2, (4.146) 

where .hλ
xc(r1, r2) is defined in terms of the pair-density .P λ

2 (r1, r2) and the density 
. ρ, 

.hλ
xc(r1, r2) = P λ

2 (r1, r2)

ρ(r1)
− ρ(r2), (4.147) 

with . P λ
2 obtained from .�λ[ρ], 

.P λ
2 (r, r′) = (4.148) 

N(N  − 1)
∑

σ,σ ′,σ3,...,σN

∫
|�λ(rσ, r′, σ ′, r3, σ3, . . . , rN , σN)|2dr3 . . . drN.

11 For further discussion of this point, see Chap. 1 by Toulouse in this volume. 
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Local interpolations within this definition have been analysed and tested in 
Refs. [87, 138] on small systems, with mixed results. 

4.6 Appendix: Kantorovich Duality 

The dual construction of the SCE functional and potential (see Theorem 4.13) 
relies on Kantorovich duality. In this Appendix we give a precise mathematical 
statement of Kantorovich duality for multi-marginal optimal transport, and show 
how it implies Theorem 4.13 (1). 

Recall the general Kantorovich optimal transport problem introduced in 
Sect. 4.3.6: for given marginal measures .μ1, . . . , .μN defined on closed subsets 
.X1, . . . , XN of . Rd , minimize a cost functional 

. C[γ ] =
∫

X1×...×XN

c(r1, . . . , rN) d�(r1, . . . , rN)

over probability measures . � on the product space .X1 × . . . × XN subject to the 
marginal constraints 

. 

∫

X1×...×Xi−1×Ai×Xi+1×...×XN

d� =
∫

Ai

dμi for all measurable sets Ai ⊆ Xi

and all i ∈ {1, . . . , N}.

Here .c : X1 × . . . × XN → R ∪ {+∞} is a given measurable cost function. 
This problem is related to a certain dual variational problem: maximize the 

functional 

. J [u1, . . . , uN ] =
N∑

i=1

∫

Xi

uidμi

over potentials .ui : Xi → R (.i = 1, . . . , N ) which must satisfy the pointwise 
constraint 

.

N∑

i=1

ui(ri ) ≤ c(r1, . . . , rN) ∀ (r1, . . . , rN) ∈ X1 × . . . × XN. (4.149) 

The following nontrivial statement, taken from the recent textbook [50], summa-
rizes what is known in . Rd , and is general enough to cover the Coulomb cost. 

Theorem 4.32 (Kantorovich Duality) For given probability measures 
.μ1, . . . , μN defined on closed subsets .X1, . . . , XN of . Rd , provided the cost function
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.c : X = X1 × · · · × XN → R ∪ {+∞} is bounded from below and lower semi-
continuous and the optimal cost is finite, 

. inf
�∈P(X)

γ 
→μ1,...,μN

∫

X

c d� = sup
(u1,...,uN )∈A(c)

N∑

i=1

∫

Xi

ui dμi, (4.150) 

where .A(c) is any of the following increasingly general sets of admissible poten-
tials: 

(1) .A(c) = {(u1, . . . , uN) : ui ∈ C0(Xi)∀i, (4.149) holds ∀r ∈ X} 
(2) .A(c) as in (1), with .Cb(Xi) in place of . C0(Xi)

(3) .A(c) as in (1), with .B(Xi) = {u : Xi → R : u bounded measurable} in place 
of . C0(Xi)

(4) .A(c) = {(u1, . . . , uN) : ui ∈ L1(Xi; dμi)∀i, (4.149) holds for μ1 ⊗· · ·⊗  
μN -a.e. r ∈ X}. 

Here we have used the standard notation .Cb(Xi) for the space of bounded 
continuous functions on . Xi , and .C0(Xi) for the space of decaying continuous 
functions on . Xi (i.e. those u which in addition satisfy .u(ri ) → 0 if .|ri | → ∞). 

In the special case of two marginals defined on compact sets, cost functions c 
which are metrics (such as .|r1 − r2|), and the choice (2) for the potentials, this 
fundamental result was discovered by Kantorovich [80]. A great many variants and 
modifications have subsequently appeared in the mathematics literature. Some of 
them replace the . Xi by abstract spaces; many are worked out only for two marginals; 
almost all of them differ in the precise assumptions on the cost function and the class 
of admissible potentials. For instance, [117] (Theorems 2.1.4(b) and 2.1.1) and [81] 
cover bounded continuous cost functions and the class (3) for N marginals; [136] 
(Theorem 1.3) covers bounded-below lower semi-continuous cost functions and the 
class (4) for two marginals. Strictly speaking, none of the versions published prior 
to the discovery of the optimal transport/SCE theory connection applied directly to 
the multi-marginal Coulomb case, even though the underlying ideas essentially did. 
For the proof of Theorem 4.32 we refer the reader to [50]. 

Technical Remark From a functional analysis point of view, the natural class of 
admissible potentials in (4.150) is the smallest one, (1). This choice reflects the 
duality between potentials . ui and measures . μi in the integral .

∫
uidμi ; note that the 

linear hull of the space .P(Rd) of probability measures, that is, the space .M(Rd) of 
signed measures, is the dual of .C0(R

d). Enlarging this class from (1) to (2)–(4) has 
the virtue that the supremum of the dual problem is attained for increasingly general 
cost functions c.
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Proof of Theorem 4.13 (1) using Theorem 4.32 Applying the Kantorovich dual-
ity theorem with . Xi , . μi , and c as in Example 4.11, and making the choice (3) for 
the class of admissible potentials, one obtains 

. inf
�∈P(RNd)

�
→ρ

∫

R
Nd

Vee d� =

sup
(u1,...,uN ) : ui∈B(Rd ) ∀i,

u1(r1)+...+uN (rN)≤Vee(r1,...,rN ) ∀(r1,...,rN)

N∑

i=1

∫

R
d
ui(ri )

ρ(ri )

N
dri .

The left-hand side is the enlarged-search definition (4.26) of the SCE functional 
.V SCE

ee [ρ] (which, by Theorem 4.1, is equivalent to the original definition (4.15)). 
The right-hand side can be simplified. For any collection of potentials .(u1, . . . , uN), 
the sum of the integrals on the right-hand side is preserved under the replacement 
.(u1, . . . , uN) 
→ (ū, . . . , ū), where . ̄u denotes the average .(u1 + · · · + uN)/N ; 
moreover the constraint in (4.6) is also preserved, thanks to the symmetry of . Vee. 
Thus the right-hand side of (4.6) stays unaltered if the supremization is restricted to 
N equal potentials, .u1 = · · · = uN = u. But in this case the right-hand side reduces 
to that of (4.55), establishing Theorem 4.13 (1). ��
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