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Spin resolution of the electron-gas correlation energy: Positive same spin contributions
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The negative correlation energyec(r s ,z) per particle of a uniform electron gas of density parameterr s and
spin polarizationz is well known, but its spin resolution into↑↓, ↑↑, and↓↓ contributions is not. Widely used
estimates are incorrect, and hamper the development of reliable density functionals and pair distribution
functions. For the spin resolution, we present interpolations between high- and low-density limits that agree
with available quantum Monte Carlo data. In the low-density limit forz50, we find that the same-spin
correlation energy is unexpectedly positive, and we explain why. We also estimate the↑ and↓ contributions to
the kinetic energy of correlation.
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I. INTRODUCTION

The uniform electron gas is a paradigm for densi
functional theory,1–3 the most widely used method for ele
tronic structure calculations in both condensed-matter ph
ics and quantum chemistry. The effects of exchange
correlation can be evaluated and understood in the unifo
density limit, and then transferred to realistic systems. Thi
done not only in the local spin-density~LSD! approximation
but also beyond LSD in generalized gradient approximati
~GGA’s!, meta-GGA’s, and hybrid functionals.3 The correla-
tion energyec(r s ,z) per particle in a uniform gas of densit
parameterr s5(4pna0

3/3)21/3 and spin polarizationz5(n↑
2n↓)/n ~wherens is the density of spin-s electrons andn
5n↑1n↓) is well known, for example, from quantum Mont
Carlo ~QMC! studies4,5 that have been parametrized6–8 to
respect known limits, but the spin resolution ofec into ↑↓,
↑↑, and ↓↓ contributions is not known. In this work, w
determine the spin resolution for allr s andz as an interpo-
lation between high- and low-density limits, consistent w
z50 QMC data.5

This spin resolution is of interest in its own right, and c
also be used in several ways:~i! Some beyond LSD correla
tion energy functionals need a missing spin resolution9 or
have been constructed10–13on the basis of the exchange-lik
ansatz of Stollet al.14

Ec
↑↓@n↑ ,n↓#'Ec@n↑ ,n↓#2Ec@n↑,0#2Ec@0,n↓# ~1!

for the uniform gas. This assumption was shown~using
QMC results! to be inaccurate forz50 ~see Fig. 1! in Ref.
15, although the significance of this observation for dens
functional theory was not fully recognized there. Our wo
provides a firmer basis than Eq.~1! for such constructions
~ii ! Correlation energy functionals such as the local s
density1 and generalized gradient approximations,16 etc.,17

can alternatively be constructed without a spin resoluti
but their later spin resolution~to permit comparison or com
bination with correlated-wave-function results12,18,19! de-
mands such a resolution for uniform densities.~iii ! A sophis-
ticated analytic model21 is now available for the pair
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distribution function15,20,21 gxc(r s ,z,u) of the uniform gas
for all r s and z. Our present work provides the missing in
gredient needed to find the corresponding spin-resolved
distribution function, which could serve as the starting po
for the development of density functionals such as sp
resolved weighted density approximations.22 ~iv! An estimate
can be made for thez dependence of the↑ and↓ contribu-
tions to the kinetic energy of correlation, a key ingredient
the approach to spin dynamics of Qian and Vignale23 and
also for the momentum distribution24 of a spin-polarized
electron gas.

We shall first derive exact limits at high densities (r s
→0) and extreme low densities (r s→`) using simple physi-
cal arguments. In the latter limit, we find that the same s
contribution to the correlation energy can be positive, and
provide an intuitive physical picture to explain this featur
While the total correlation energy must be negative, in
vidual terms of it~e.g., the kinetic energy of correlation! can
be positive. We then build up and discuss our interpolat
formulas.

II. DEFINITIONS

Correlation effects arise from the Coulomb interactio
which is a two-body operator. When evaluating the energy
the system̂ CuHuC& one can split the sum over the electro
spins into↑↓, ↑↑, and↓↓ contributions. The correspondin
splitting of the correlation energy of the uniform electro
gas,

ec~r s ,z!5ec
↑↓~r s ,z!1ec

↑↑~r s ,z!1ec
↓↓~r s ,z! ~2!

is the object of this Rapid Communication. The real-spa

analysis of the spin-resolved correlation energiesec
ss8(r s ,z)

is provided by the correlation holesns8ḡc
ss8(r s ,z,u) ~see,

e.g., Ref. 21!, whereu5ur12r2u is the electron-electron dis
tance

ec
ss8~r s ,z!52p

ns

n E
0

`

ns8ḡc
ss8~r s ,z,u!udu. ~3!
©2004 The American Physical Society03-1
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The correlation holens8ḡc
ss8(r s ,z,u) describes the chang

~due to correlation only! of spin-s8 electron density atu,
when a spin-s electron is at the origin.ḡc is averaged over
coupling strength, whilegc is for full coupling strength. We
define fractionsFss8(r s ,z) such that

ec
ss8~r s ,z!5ec~r s ,z!Fss8~r s ,z!, ~4!

and we investigate their properties. In what follows, we u
Hartree atomic units, and the parametrization ofec(r s ,z)
and its limits from Ref. 8.

III. EXACT LIMITS

When r s→0, the Coulomb electron-electron interactio
can be treated as a perturbation to the noninteracting F
gas. The first-order~in the Coulomb potential! correction
term gives the exchange energyex5ex

↑↑1ex
↓↓ , where ex

↑↑

52(3/8par s)(11z)4/3, ex
↓↓52(3/8par s)(12z)4/3, and

a5(9p/4)21/3. As for correlation, the real-space analysis
the exchange energies is provided by the exchange h
ns@gx

ss(z,u/r s)21#, which are analytically known~see,
e.g., Ref. 21!.

The second-order correction to the energy of the nonin
acting Fermi gas is the sum of a direct term and a seco
order exchange term. Only the direct term diverges, a

FIG. 1. Fraction of ↑↓ correlation energy, F↑↓(r s ,z)
5ec

↑↓(r s ,z)/ec(r s ,z) at z50. Our Eq.~9! is compared with the
GSB @Gori-Giorgi, Sacchetti, and Bachelet~Ref. 15!# values ex-
tracted from QMC~Ref. 5! data (d), and with the Stollet al.14

PW92~Ref. 20!, and SKTP@Schmidt, Kurth, Tao, and Perdew~Ref.
28!# scaling relations. Valence electrons have 2&r s&6.
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when a cutoff}1/Ar s ~due to Thomas-Fermi screening e
fects! at small wave vectors is introduced, gives rise to
leading term inec(r s ,z), equal toc0(z)ln rs. The function
c0(z) is exactly known.25 The direct term@Eq. ~5.110! of
Ref. 26# can be divided into↑↓, ↑↑, and↓↓ excitation pairs
to derive

F↑↑~r s→0,z![F↑↑
HD~z!5

11z

4I ~z!
, ~5!

with I (z)5c0(z)/c0(0), asconjectured in Ref. 25.@Since
F↓↓(r s ,z)5F↑↑(r s ,2z) and F↑↓512F↑↑2F↓↓ , we only
report formulas for↑↑.# The Stollet al. ansatz of Eq.~1! is
thus correct forr s→0 ~and for all r s when uzu51, but not
otherwise!.

In the opposite or strong-interaction limit,r s→`, the
long-range Coulomb repulsion between the electrons
comes dominant with respect to the kinetic energy, and t
with respect to statistics; Coulomb repulsion suppres
electron-electron overlap so that the electrons no lon
know they are fermions. In this limit, the total energy b
comes independent4,5,8,27,21of z. Its leading term in ther s
→` expansion is equal to2d1 /r s , where8 d1.0.892, and
is purely potential energy, with no kinetic energy contrib
tion. In this limit, the total energy is thus equal to th
exchange-correlation energyexc5ex1ec . Moreover, since
the statistics becomes irrelevant, we expect that

S 2

11z D 2

exc
↑↑5S 2

12z D 2

exc
↓↓5

2

~12z2!
exc

↑↓5exc , ~6!

where the prefactors take into account the available num

of pairs. In other words, we expect that*0
`du4pu2ḡxc

ss8/u
becomes independent ofs and s8, so that spin structure
becomes unimportant for the exchange-correlation and t
energies~although very important for the correlation energ
alone!. Then theFss8(r s→`,z)[Fss8

LD (z) are given by

F↑↑
LD~z!5

3~11z!4/322pa~11z!2 d1

3@~11z!4/31~12z!4/3#28pa d1

. ~7!

The high and low densityFss8 are displayed in Fig. 2. We
see that, in the spin-unpolarized gas, the same spin↑↑
1↓↓) contribution to the correlation energy is 50% whe
r s→0 but roughly 0 whenr s→`. This can be understood in
FIG. 2. Spin resolutionFss8(r s ,z)5ec
ss8(r s ,z)/ec(r s ,z) as a function ofz for different r s . The high-density~HD! and low-density

~LD! limits are given in Eqs.~5! and~7!. The r s53.28 curves correspond to the SKTP~Ref. 28! scaling relation of Eq.~8!, while for other
density values (r s51, 10, and 100! our interpolation formulas of Eq.~9! have been used.
3-2
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a simple way. The exchange hole seen by the same
electrons is deep for electron-electron distancesu&r s , as
shown in the upper panel of Fig. 3~solid line,↑↑1↓↓). But
there is a second length scale, the Thomas-Fermi scree
lengthAr s. For r s→0, the important correlations, which de
termine the leading term (} ln rs) of ec , arise from this sec-
ond length scale,Ar s@r s , and are essentially unaffected b
exchange: the electrons that participate in this correla
have no way to know if the electron atu50 is spin-↑ or
spin-↓, so by symmetry the same spin and opposite s
correlation energies are equal. In the opposite limitr s→`
the antiparallel-spin correlation hole can get deep foru
&r s , as shown in the upper panel of Fig. 3.

As r s increases,gxc
↑↓ deviates more and more from it

noninteracting value~equal to 1 for allu), the only con-
straint being its positiveness. But the same spin correla
hole is ‘‘blocked’’ from doing this by the exchange hole~see,
again, the upper panel of Fig. 3!. Thus the system minimize
its energy by focussing the correlation on opposite spin pa
In the extreme low-density limit, a simple qualitative pictu
can be obtained by using the correlation-hole model of R
21 ~in which energetically unimportant long-range oscill
tions are averaged out!; in the lower panel of Fig. 3, we
report the corresponding real-space analysis ofec

↑↓ and ec
↑↑

1ec
↓↓ for r s→`. We see that the same spin correlation h

for u&r s cannot get as deep as the opposite spin one.
Figure 2 also shows that in the spin-unpolarized gas

same spin correlation energy is slightly positive (Fss,0)
when r s→`. In this limit, the electrons correlate strongl
and the exchange-correlation holes show a high fi
neighbor peak atu'2r s ~lower panel of Fig. 3!. If the only
effect of same spin correlation were to push same spin e
trons away from the region of smallu and pile them up at
u'2r s , then @by the sum rule integral*du4pu2nsḡc

ss(u)

FIG. 3. Upper panel: the spin-resolved pair distribution fun
tions for the paramagnetic gas. The dashed arrows show the tre
the holes as the coupling strengthr s is increased. Lower panel
real-space analysis of the correlation energy in the extreme
density limit for the paramagnetic gas. The results are from
model of Ref. 21.
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50] the same spin correlation energy@Eq. ~3! with s5s8]
would necessarily be negative. So, what must really hap
is that the same spin electrons that accumulate in the pea
u'2r s include some that have been pushed out fromu
!2r s and some that have been pulled in fromu@2r s . This
is again illustrated in the lower panel of Fig. 3. We interp
the second zero ofgc , which appears at largeu but only at
larger s , as the energetically important remnant of the lon
range oscillation ofgc in a Wigner crystal.

Positive same spin correlation energy may be an ex
effect, but the blockage of negative same-spin correlat
also occurs in a nonmagnetic Mott insulator, e.g., an
panded lattice of hydrogen atoms where Coulomb correla
suppresses the (1s)2 configuration on a given site. Th
blockage of same spin correlation occurs even in a wea
correlated spin-unpolarized system when the correlation h
is spatially constrained, as for an atom.12,18,19 In the neon
atom, the true~as cited in Ref. 18! antiparallel-spin correla-
tion energy is 65% of its LSD value, while the true paralle
spin correlation energy is only 30% of its LSD value.

IV. INTERPOLATION BETWEEN HIGH AND LOW
DENSITY

We want to build up interpolation formulas fo
Fss8(r s ,z) that include all the information available on th
spin resolution ofec . Besides the high- and low-density lim
its, we have data forFss8(r s,0), in the range 0.8<r s<10.
These data have been obtained in Ref. 15@Gori-Giorgi, Sac-
chetti, and Bachelet~GSB!# by integrating spin-resolved
QMC correlation holes.5 Moreover, Schmidt, Kurth, Tao, an
Perdew28 ~SKTP!, starting from nearly exact limits of the
spin-resolved correlation holes, proposed a scaling rela
that is in agreement with the GSB data atr s53.28, and that,
as shown in Fig. 2~curves labeled with ‘‘r s53.28’’!, lies in
between the high- and the low-density limits with a ve
‘‘reasonable’’ shape. The SKTP scaling should thus be
good ‘‘intermediate point’’ for our interpolation formulas
We thus define

F↑↑
SKTP~z!5S 11z

2 D 11/6ec~3.28,1!

ec~3.28,z!
, ~8!

and we parametrizeFss8(r s ,z) as

Fss8~r s ,z!5
Fss8

HD
~z!1Ass8~z!Ar s1BFss8

LD
~z!r s

11CAr s1Brs

. ~9!

Ass8(z) is found by requiring that Fss8(3.28,z)
5Fss8

SKTP(z), i.e.,

Ass8~z!5
Fss8

SKTP
~z!2Fss8

HD
~z!

A3.28
1CFss8

SKTP
~z!

1BA3.28@Fss8
SKTP

~z!2Fss8
LD

~z!#. ~10!

The form of Eq.~9! is motivated by the expression for th
correlation energy given in Ref. 7. The parametersB andC
are fixed by a best fit ofFss8(r s,0) to the GSB data forr s

-
of

-
e

3-3



s
r
d
i

i
e

in
fo
e

si-

he
d to
ron
n in
sity
nd
edly
port

ve

le,
up-
-
78

RAPID COMMUNICATIONS

PAOLA GORI-GIORGI AND JOHN P. PERDEW PHYSICAL REVIEW B69, 041103~R! ~2004!
P@0.8,10#: B50.178488,C52.856. In Fig. 1, ourF↑↓(r s,0)
is compared with the GSB data,15 and with the widely used
Stoll et al.14 ansatz of Eq.~1!, which strongly underestimate
the fraction of↑↓ correlation energy at metallic and lowe
densities. The results for the paramagnetic gas correspon
to other proposed scaling relations are also shown. Our
terpolation formulas as functions ofz, at r s51,10, and 100,
are displayed in Fig. 2.

V. KINETIC ENERGY OF CORRELATION

Defining29 ec
↑5ec

↑↑1 1
2 ec

↑↓ ~with a similar equation for↓),
the adiabatic connection between the noninteracting and
teracting limits for a given density suggests estimating th↑
and↓ contributions~from the one-particle density matrix! to
the kinetic energy of correlationtc5tc

↑1tc
↓ as29

tc
s~r s ,z!'2

]

]r s
@r sec

s~r s ,z!#, ~11!

although as Ref. 30 points out there is only one coupl
constant with a Hellmann-Feynman theorem, not one
eachs. Taking Eq.~11! as a plausible approximation, w
find that the corresponding result fortc

↑2tc
↓ is in reasonable

agreement with the scaling relation given in Eq.~29! of Ref.
23. ~For r s&5, the difference is less than 3.5%.! Via Eq.
n
n

,

ua

04110
ing
n-

n-

g
r

~11!, we also confirm that, for 1&r s&10, the quantity (tc
↑

2tc
↓)/tc(r s ,z) is almost independent ofr s , as recently found

in a more sophisticated calculation within the Singwi-To
Land-Sjöland approximation.31

VI. CONCLUSIONS

In summary, we have found the spin resolution of t
electron gas correlation energy, via an approach applie
but not restricted to the three-dimensional uniform elect
gas. Our results can be used to understand correlatio
more realistic systems, and to construct improved den
functionals and pair distribution functions. We have fou
that the same spin correlation energy can be unexpect
but understandably positive. We have also provided sup
for resolutions23,31 of the kinetic energy of correlation into↑
and↓ terms. It is further possible to show that the positi
spin stiffness of correlation6,8 has positive↑↓ and negative
↑↑1↓↓ contributions.
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