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Abstract
We re-adapt a spectral renormalization method, introduced in nonlinear optics, to solve the
Kohn–Sham (KS) equations of density functional theory, with a focus on functionals based on
the strictly-correlated electrons (SCE) regime, which are particularly challenging to converge.
Important aspects of the method are: (i) the eigenvalues and the density are computed
simultaneously; (ii) it converges using randomized initial guesses; (iii) easy to implement.
Using this method we could converge for the first time the Kohn–Sham equations with
functionals that include the next leading term in the strong-interaction limit of density
functional theory, the so called zero-point energy (ZPE) functional as well as with an
interaction-strength-interpolation functional that includes both the exact SCE and ZPE terms.
This work is the first building block for future studies on quantum systems confined in low
dimensions with different statistics and long-range repulsions, such as localization properties
of fermions and bosons with strong long-range repulsive interactions in the presence of a
random external potential.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Capturing the effects of the interactions between the par-
ticles of a quantum system in a computationally efficient
way is of crucial importance in many areas of physics and
chemistry. Particle–particle interactions not only determine
many of the fundamental physical properties of the system
under study, but also play a crucial role regarding practi-
cal applications in fields ranging from materials science to

3 Author to whom any correspondence should be addressed.

theoretical and computational chemistry, atomtronics, spin-
tronics and quantum information, to name a few.

Computationally efficient approximate methods that target
interacting quantum particles in real space (i.e., without resort-
ing to lattice Hamiltonians) are mainly based on single-particle
equations for a set of orbitals φi (r), e.g., Gross–Pitaevskii
for bosons, Hartree–Fock (HF) and Kohn–Sham (KS) den-
sity functional theory (DFT) for fermions. They all rely on
an ansatz to transform the particle–particle interactions into
an effective one-body potential that depends non-linearly on
the orbitals φi (r). The problem is then reduced to a set of
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non-linear single-particle Schrödinger equations, requiring the
search for a self-consistent solution. These methods, within
the current approximations for the effective potential, typi-
cally fail, even at the qualitative level, when the physics of
the system under study differs too much from the one of
non-interacting particles.

A different class of approximations to transform the parti-
cle–particle interactions into an effective one-body potential
has emerged in the recent years, based on the semiclassi-
cal limit of the many-electron Schrödinger equation taken
at fixed single-particle density [1–5]. The formalism, called
‘strictly-correlated-electrons’ (SCE) functional, corresponds
to the strong-coupling limit of KS DFT for the many-electron
problem [6–10], and can be generalised to other particles
(bosons and fermions) with repulsive long-ranged interac-
tions [4]. The use of the SCE one-body potential in the KS
equations has a very distinctive attractive feature: the results
for the total energy, for the single-particle density and for the
chemical potential become asymptotically close to the ones of
the exact many-body problem as the system approaches the
limit in which particle–particle interactions dominate over the
kinetic energy [1–4, 11], which is the regime where current
approximations typically break down completely. In (quasi)
one-dimensional systems, the SCE potential has a known form
[1, 2, 6, 12] in terms of integrals of the single-particle den-
sity, with computational cost, in principle, similar to the one
of the local-density approximation (LDA). In 2 and 3 dimen-
sions, an accurate (although not always exact) form is known
for spherically symmetric systems [3, 7, 13], while for general
geometry one could resort to approximations inspired to the
SCE mathematical structure [14–16] or to algorithms from the
optimal transport (OT) community [5, 17–22], as SCE maps
into a multimarginal OT problem [23, 24]. While the systems
studied in Chemistry are usually far from the limit in which KS
SCE becomes accurate, this is not the case for many interest-
ing physical systems, such as electrons confined at the inter-
face of semiconductor heterostructures or dipolar and charged
cold atoms [2, 3, 25–27]. Their physics can be captured with
Hamiltonians in the continuum, with long-ranged repulsive
interactions, often in 1 or 2 dimensions, with external poten-
tials that drive the system close to the regime where KS SCE
becomes accurate [2–4]. This opens a realm of very interesting
problems that can be studied, such as ground-state and dynam-
ical (via the time-dependent extension of DFT, TD DFT)
properties of fermions and bosons with strong long-range
correlations in the presence of disorder.

The non-linearity introduced by the SCE potential in
the corresponding single-particle equations, however, is very
different from the one of standard approximations, and,
especially close to the (most interesting) strongly-correlated
regime, our experience is that convergence is difficult to reach,
with a crucial role played by the starting guess for the self-
consistent iteration. A similar observation is also reported
in reference [5]. This is probably an inherent feature of KS
DFT, as it was observed also with the exact potential built by
reverse engineering accurate solutions of the many-body sys-
tem [28]. Particularly the dependence on the initial guess is a

very limiting factor for the study of systems in the presence of
randomness.

Moreover, the next leading order in the strong-coupling
expansion of DFT, the so called zero-point energy (ZPE)
functional [8], also provides a very interesting approximation
that includes kinetic-correlation effects and has an involved
non-local density dependence. Only very recently we have
computed its functional derivative [29], showing that the
resulting effective one-body potential has divergences that
make the convergence of the self-consistent KS equations very
challenging.

In reference [30] Ablowitz and Musslimani proposed a
spectral renormalization (SR) scheme (in the field of non-
linear optics) to compute localized solutions in non-linear
waveguides, which is quite general and converges very eas-
ily. The method has been used to solve the Gross–Pitaevskii
equation for bosons in several interesting cases [31–35]. The
core idea is to re-cast the single-particle equations in Fourier
space, which are then solved using a renormalized fixed-point
iteration (see appendix A for more details). Its main strengths
are: easy to implement; the ground state density and eigenval-
ues are computed simultaneously; shows great robustness with
respect to the initial guess (including random initial guess).

The aim of this work is to adapt the SR method to solve
the KS equations, in order to build a solid basis for study-
ing in future works the challenging physics of systems with
long-range repulsions in the presence of randomness, using
the strictly-correlated functionals. We focus on (quasi) one-
dimensional systems (quantum wires) interacting via the effec-
tive Coulomb repulsion renormalized at the origin, to take
into account the thickness of the wire [36–39], for which the
SCE potential can be always constructed exactly [1, 2, 6, 12].
Using this method, we were able to also obtain for the first
time converged self-consistent KS results with the SCE + ZPE
functional, and with an interacting-strength interpolation (ISI)
functional that includes exact exchange, and the exact SCE
and ZPE terms. We also analyze the local-density approxima-
tion, for which we find, in one case, a different self-consistent
solution than the one which was found independently by two
different groups, providing evidence that our solution is the
correct one.

The paper is organised as follows: in section 2 we provide
an introductory theoretical background to KS–DFT, including
the approximations we are using for the exchange–correlation
potential. Next, in section 3 the SR method is formally outlined
for the KS scheme, including details of the numerical imple-
mentation for one-dimensional systems. Results are presented
and discussed in section 4, with conclusions and perspectives
in the last section 5.

2. Theoretical background

We consider quantum mechanical systems of N identical inter-
acting particles in a given external single-particle potential
vext (r), described by Hamiltonians of the kind

Ĥ = T̂ + V̂ int + V̂ext, (1)
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where, T̂ = − 1
2

∑N
i=1 ∇2

i is the kinetic energy operator of the
N particles, while

V̂ int =
1
2

N∑
i, j=1
i �= j

vint
(
|ri − r j|

)
, (2)

is the operator of a two-body interaction between these par-
ticles, which we consider here isotropic, vint(r). The external
potential is a local one-body operator,

V̂ext =
N∑

i=1

vext(ri). (3)

2.1. Density functional theory

Given a N-body wave function Ψ(u1, . . . , uN), where the sym-
bol ui = risi comprises both position (ri) and (if applicable)
spin variable (si) of the ith particle, the corresponding density
ρ (r) is defined as

ρ (r) = N
∑

s1,...,sN

∫
dr2 . . . drN |Ψ(rs1, u2, . . . , uN)|2. (4)

Clearly, ρ integrates to the particle number,∫
dr ρ (r) = N. (5)

The curse of dimensionality (as the number of particles
increases) in the search for the ground state energy E0 of
equation (1) is addressed in DFT by rewriting the problem as
a nested minimisation, namely

E0 = min
ρ

{
F[ρ] +

∫
dr vext (r) ρ (r)

}
, (6)

where the Hohenberg–Kohn [40] functional F[ρ], in the Levy
[41] constrained-search formulation, is

F[ρ] = min
Ψ→ρ

〈
Ψ
∣∣T̂ + V̂ int

∣∣Ψ〉 , (7)

with ‘Ψ→ ρ’ meaning that the search is performed over all
possible wavefunctions (with the same statistics of the par-
ticles of the many-body system under study) that yield, via
equation (4), the density ρ. The functional F[ρ] is ‘universal’
in the sense that, once the two-body interaction vint(r) and the
particle statistics is specified, F[ρ] is a pure functional of ρ,
valid for all possible external potentials vext (r).

2.2. Kohn–Sham equations

The challenge is of course to find good approximations for
F[ρ], able to take into account the particle statistics and the
particle–particle interactions V̂ int. In KS–DFT, F[ρ] is divided
up into three pieces,

F[ρ] = Ts[ρ] + U[ρ] + Exc[ρ], (8)

where T s[ρ] is defined as

Ts[ρ] = min
Ψ→ρ

〈
Ψ
∣∣T̂∣∣Ψ〉 . (9)

Again, the constrained search is restricted over wavefunctions
having the same statistics as the one of the many-body system
under study. The Hartree functional U[ρ] is the usual mean-
field (direct) term

U[ρ] =
1
2

∫
dr1dr2 vint

(
|r1 − r2|

)
ρ(r1) ρ(r2), (10)

and the unknown exchange–correlation (xc) energy functional
Exc[ρ] is defined by equation (8), and must be approximated
(see section 2.3 below).

Since T̂ is a one-body operator, the minimising wavefunc-
tion in equation (9) for a given ρ is usually a non-interacting
state Ψ = Φ formed by single-particle orbitals φi (r), whose
occupation numbers are dictated by the particle statistics. The
minimisation with respect to the density ρ of the energy of
the system under study, given by equations (6) and (8), is then
rewritten as

E0 = min
Φ

{
〈Φ|T̂ + V̂ext|Φ〉+ U[ρΦ] + Exc[ρΦ]

}
, (11)

where the notation U[ρΦ] and Exc[ρΦ] means that these func-
tionals depend on Φ only through its density ρ = ρΦ, com-
puted by inserting Φ in equation (4). The Euler–Lagrange
equations for the minimisation (11) are the KS single particle
equations,(

−1
2
∇2 + vext (r) + vHxc ([ρ], r)

)
︸ ︷︷ ︸

≡ĥ

φi (r) = εiφi (r) . (12)

Here, ρ = ρΦ is the density of the occupied orbitalsφi with the
lowest eigenvalues εi,

ρ (r) =
imax∑
i=1

ni|φi (r) |2, (13)

where, for example, imax = 1 and n1 = N for bosons, imax =
N/2 and all the ni = 2 for an even number of spin-1/2
fermions, etc.

In equation (12), the Hartree plus exchange–correlation
potential vHxc([ρ], r),

vHxc ([ρ], r) = vH ([ρ], r) + vxc ([ρ], r) , (14)

is the single-particle potential that should embody the effects
of particle–particle interactions via a non-linear dependence
on the particle density, with vH ([ρ], r) given by the functional
derivative of equation (10) with respect to the density

vH ([ρ], r) =
∫

dr′ vint

(
|r − r′|

)
ρ(r′), (15)

and, similarly, vxc ([ρ], r) the exchange–correlation potential
defined as

vxc ([ρ], r) =
δExc[ρ]
δρ (r)

. (16)

3
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2.3. Approximations for the xc functional

The KS construction gives a way to include the main effects of
particle statistics in the energy density functional, by invoking
a non-interacting system with the same density and particle
statistics of the physical, interacting, one. The whole problem
is then reduced to finding suitable approximations for Exc[ρ]
and its functional derivative vxc ([ρ], r), equation (16). While in
chemistry hundreds of different approximations for the case of
electrons in 3D are available, here we focus on approximations
that can be used to study model systems in physics, confined in
low dimensions, at low density, and with different interactions
and particle statistics.

2.3.1. Hartree approximation. In this case, we simply set
vxc ([ρ], r) ≈ 0 in equation (14). The Hartree approximation
corresponds to treat particles as if they were interacting only
with an effective mean field generated by the charge distribu-
tion ρ (r). By neglecting both exchange and correlation effects,
the Hartree potential of equation (15) is the same regardless the
statistics of the particles.

If we consider bosons interacting with a contact inter-
action vint(|r − r′|) = g δ(|r − r′|), via this approximation
equation (12) reduces to the Gross–Pitaevskii equation.

2.3.2. Local density approximation (LDA). In the LDA, one
first computes the xc energy per particle εxc(ρ) of a uniform
quantum gas with a constant density ρ. The particles inter-
act via the same vint(r) and have the same statistics (bosons,
fermions with different spins) we aim to treat. The xc energy
is then obtained by replacing locally the uniform density of the
quantum gas with ρ(r) and averaging over all space:

ELDA
xc [ρ] =

∫
dr ρ (r) εxc (ρ (r)) . (17)

Typically, the xc energy of the uniform quantum gas is com-
puted via quantum Monte Carlo (QMC) or other many-body
methods and then parametrized as a function of ρ, taking into
account known asymptotic properties at high- (ρ→∞) and
low-density (ρ→ 0).

In 3D, parametrizations based on QMC data are available
for spin-1/2 fermions (in different spin-polarisation states)
with the Coulomb interaction [42–45], contact interaction
[46], as well as Coulomb interactions screened at long- [47]
and short-range [48, 49].

In 2D a parametrization of QMC data for the interaction
1/r (as one is usually interested in systems interacting with
the Coulomb interaction in 3D, with a strong confinement in
one direction) is available for spin-1/2 fermions (again, in dif-
ferent spin states) [50] and for bosons [51]. A formula for
fermions having spin higher than 1/2 (or other degrees of free-
dom) is also available [52], based on an interpolation between
electrons and bosons.

For the 1D case, if we are interested in modelling systems
repelling via the Coulomb interaction and strongly confined in
2 directions, we need to regularise the 1/r divergence at the ori-
gin as, otherwise, (i) the wavefunction is forced to have nodes
at coalescence of two particles, while in a quasi-1D system this
does not happen for unlike spin particles or for bosons, and

(ii) the Hartree potential diverges. A possible choice, which
will be adopted in this work, is the interaction [37, 38]

vQ1D
int (x) =

√
π

2b
exp

(
x2

4b2

)
erfc

(
|x|
2b

)
, (18)

obtained by integrating the 3D Coulomb interaction 1/r over
oscillator wave functions of thickness b in two directions.
While vQ1D

int (0) =
√
π

2b is finite, mimicking the effect of finite
thickness, the Coulomb potential is recovered from its long
range asymptotics,

vQ1D
int (x) → 1

|x|
(
|x| � b

)
. (19)

A LDA parametrisation based on QMC results for this interac-
tion is available for different values of b [38] and is reported in
appendix B2 for convenience, for the case b = 0.1 considered
here. A 1D LDA is also available for soft Coulomb interaction,
vsoft(x) = (a2 + x2)−1/2 [53].

From equation (16) we have then

vLDA
xc ([ρ], r) =

δELDA
xc [ρ]
δρ (r)

= εxc (ρ (r)) + ρ (r) ε′xc (ρ (r)) . (20)

2.3.3. Strictly-correlated-electrons (SCE). In the KS SCE
scheme [1–3, 5], the Hartree plus exchange–correlation func-
tional EHxc[ρ] = U[ρ] + Exc[ρ] is approximated with the
strictly-correlated functional [6, 7]

VSCE
int [ρ] = inf

Ψ→ρ
〈Ψ|V̂ int|Ψ〉. (21)

Accordingly, the Hartree plus exchange correlation potential
is replaced by the SCE potential:

vHxc ([ρ], x) ≈ ṽSCE ([ρ], x) =
δVSCE

int [ρ]
δρ(x)

. (22)

The functional VSCE
int [ρ] has been introduced for the case of

electrons (Coulomb interactions) [6, 7], and describes a semi-
classical problem with prescribed single-particle density. As
such, the infimum in equation (21) is reached on a distribu-
tion which does not depend on the spin variables. In other
words, the functional VSCE

int [ρ] is the same for all particle statis-
tics (for a rigorous proof, see references [9, 10]), and can be
thus combined with the Ts[ρ] having the statistics we want to
describe [4]. Also, another advantage of the SCE functional
is that it can be constructed for different long-range repulsive
interactions [4] without requiring a parametrisation of the cor-
responding uniform quantum gas. Moreover, in the limit in
which the interactions among the particles become dominant,
the KS equations with the SCE functional approach asymptot-
ically the exact many-body ground-state energy, density and
chemical potential [9, 10].

We refer the reader to references [2, 3, 7] and [4] for
the SCE theory, while here we outline how to construct
ṽSCE ([ρ], x) for the case D = 1 [6], which has been proven
[12] to yield the exact solution to the problem posed by

4



J. Phys.: Condens. Matter 32 (2020) 475602 J Grossi et al

equation (21) when the function vint(x) is convex, as it is
the case for equation (18). For a given density ρ(x) with N
electrons in one dimension, we introduce a sequence of N
co-motion functions f 1([ρ], x), . . . , f N([ρ], x) defined as fol-
lows: f 1([ρ], x) = x; for n � 2, f n([ρ], x) has a pole at location
x = an fixed by the condition∫ ∞

an

dt ρ(t) = n − 1. (23)

In terms of an, the functions f n([ρ], x) are fixed by

for x < an:
∫ fn([ρ],x)

x
dt ρ(t) = n − 1,

for x > an:
∫ x

fn([ρ],x)
dt ρ(t) = N − (n − 1).

(24)

Note that the co-motion functions form a group (with respect
to composition) with N elements satisfying

fm ( fn(x)) = fmodN [m+n−1](x). (25)

The SCE potential is given in terms of the fn(x)

ṽSCE ([ρ], x) =
N∑

i=2

∫ x

−∞
dy v′int (y − f i([ρ], y)) . (26)

2.3.4. SCE plus zero point energy (ZPE). The SCE approx-
imation treats electrons semiclassically, by neglecting any
kinetic correlation contribution. The next leading term in the
semiclassical expansion can be written as ZPE oscillations in
a metric dictated by the density [8]. Although there is no rig-
orous proof, there is numerical evidence in simple cases that
for a fixed density ρ the exact Hohenberg–Kohn functional
approaches the SCE plus ZPE functional in the limit of strong
coupling [54].

The ZPE functional is written as D(N − 1) oscillator ener-
gies 1

2�ωμ (here we are setting � = 1) given by functionals
ωμ([ρ], r) of the density ρ, and averaged over space [8],

FZPE[ρ] =
1
2

ND∑
μ=D+1

∫
dr

ρ(r)
N

ωμ([ρ], r). (27)

The SCE + ZPE approximation in the KS scheme reads

EHxc[ρ] ≈ VSCE
int [ρ] + FZPE[ρ]. (28)

Consequently, in equation (16) we approximate

vHxc([ρ], r) ≈ ṽSCE(r) + ṽZPE([ρ], r) (29)

with

ṽZPE([ρ], r) =
δFZPE[ρ]
δρ(r)

. (30)

This functional derivative is quite involved to compute, and has
been obtained analytically only for the simple case of N = 2

electrons in 1D, see reference [29]. In this case, there is only
one frequency ωμ = ω and [29]

ṽZPE([ρ], x) =
ω([ρ], x)

4
+

1
4

∫ f (x)

x
Λ([ρ], y)dy, (31)

where ω([ρ], x) reads [6, 29]

ω([ρ], x) =

√
v′′int(|x − f (x)|)

(
ρ(x)

ρ( f (x))
+

ρ( f (x))
ρ(x)

)
. (32)

The functional Λ([ρ], y) is defined in terms of the co-motion
function f (x) and the density ρ(x),

Λ([ρ], y) =
v′′′int( f (y) − y)

ω(y)
+

v′′int( f (y) − y)
ω(y)

ρ′( f (y))
ρ( f (y))

3 f ′(y)2 + 1
f ′(y)2 + 1

(33)
Although not immediate from equation (33), it can be shown
[29] that Λ([ρ], y) is a bounded function. Therefore, the second
term in equation (31) is subleading with respect to ω([ρ], x)
both at x ∼ a1 and x ∼ ±∞, since typically ω([ρ], x) diverges
at those points. As discussed at length in section 4, this can
have quite relevant consequences on the converged result of a
KS scheme.

2.3.5. ZPE with interaction strength interpolation (ZPEisi).
The SCE functional is the limit of the Hohenberg–Kohn
functional when �→ 0. Physically speaking, the SCE
approximation provides more and more accurate pieces of
information the more the particle-particle interactions are pre-
dominant with respect to the kinetic energy (effective Bohr
radius much smaller than the average particle–particle dis-
tance). Since chemical systems are usually not in this regime,
in quantum chemistry the SCE limit finds a useful applica-
tion when combined with an interpolation along the so-called
adiabatic connection [55], modeling the exact xc energy by
connecting the SCE system to the non interacting one [56, 57].
This interaction strength interpolation (ISI) idea, using differ-
ent forms for the interpolation function [8, 56–58] has been
extensively tested on chemical systems [57, 59–65]. It has also
been applied successfully to the two-valley electron gas [66].
Here we will test a simplified form of the ISI scheme that uses
both the SCE and ZPE functionals to interpolate between weak
(exact exchange) and strong interaction, proposed in reference
[67]. Within this approximation, that we call here ZPEisi, the
Hartree and xc correlation functional reads [29, 67]

EZPEisi
Hxc [ρ] ≈ VSCE

int [ρ] + FZPE[ρ]
(√

1 + a[ρ] −
√

a[ρ]
)

︸ ︷︷ ︸
FZPE

isi [ρ]

,

(34)
with

a[ρ] =

(
FZPE[ρ]

2(Ex[ρ] − (VSCE
int [ρ] − UH[ρ]))

)2

,

Ex[ρ] = 〈Φ|V̂ int|Φ〉 − UH[ρ],

(35)

and Φ the non-interacting wavefunction built with the orbitals
solutions of the self-consistent KS equations. While in the
Chemistry literature the ISI functionals have been always used

5
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with semilocal approximations for the SCE and the ZPE func-
tionals [57, 59–64], here we can test them for the first time,
at least in a very simple case, with the full non-local exact
functionals from the strictly-correlated regime, using their
functional derivatives in the self-consistent KS equations.

3. Numerical implementation and the spectral
renormalization algorithm

The SR algorithm we use is a readaptation of the method
of reference [30]. Given the D-dimensional forward Fourier
transform

φ̂ (k) ≡ F [φ (r)] =
∫

drφ (r) e−ik·r, (36)

and its inverse

φ (r) ≡ F−1[φ̂ (k)] =
1

(2π)D/2

∫
dk φ̂ (k) e+ik·r, (37)

the KS equation (12) for each orbital in Fourier space reads

|k|2
2

φ̂ (k) + F [vKS ([ρ], r) φ (r)] = ε φ̂ (k) , (38)

with the full (external plus Hxc) potential given by

vKS ([ρ], r) = vext (r) + vHxc ([ρ], r) . (39)

Multiplying equation (38) by (φ̂)∗ (k) and integrating over all
space results in

ε =

∫
dk
{

1
2
|k|2|φ̂ (k) |2 + (φ̂)∗ (k)F [vKS ([ρ], r) φ (r)]

}
.

(40)
Depending on the type of external potential, the second term on
the right-hand side of equation (40) can be either positive (for
example for harmonic confinement) or negative (for example
for Coulomb attractive external potential). We thus distinguish
between two scenarios: (i) When ε < 0, we have |k|2 − 2ε �= 0
for all k ∈ R

D, and equation (38) can be rewritten as

φ̂ (k) = − F [vKS ([ρ], r) φ (r)]
|k|2

2 − ε
. (41)

When the condition ε < 0 is not guaranteed, we can have
|k|2 ≈ ε and the scheme could break down. This can be the
case, for example, for unbounded binding potentials which
cannot be shifted to a constant value at ±∞. We therefore
choose arbitrarily a number c > 0 and add c φ̂ (k) on both sides
of equation (38). Then, instead of equation (41), we can write

φ̂ (k) = − F [vKS ([ρ], r) φ (r)] − (ε+ c) φ̂ (k)
|k|2

2 + c
. (42)

Equation (41) or (42), together with equation (40), are used for
a fixed-point iteration, as schematically shown in figure 1. A
more detailed explanation of all the steps is given in appendix
A.

The approximations for the xc potential discussed in the
previous section, in particular the SCE and the SCE + ZPE

Figure 1. SR algorithm in a nutshell. F denotes the Fourier
transform.

ones, introduce a complex non-linearity in the KS equations,
making their convergence rather challenging, with a deli-
cate dependence on the initial guess. These aspects of the
problem are tackled by two key features of the SR algorithm,
namely (i) the initial guesses for the orbitals (red block in
figure 1) can be taken to be random noise in the interval [0, 1]
over the whole grid, without affecting the convergence of the
algorithm and (ii) at each step, the Schrödinger equation is not
solved: instead, by inversion of the Kohn–Sham Hamiltonian
in Fourier space, it is used to generate the set of orbitals for the
next iteration (green blocks in figure 1).

As the algorithm converges, the norm of the non-
normalised orbitals {φnew

i } converges to 1. This can be used
as test of convergence. Another option is to compute the
Hausdorff distance between two subsequent iterations φ( j) and
φ( j+1), exiting the loop upon reaching a certain threshold. A

final possibility is to check whether the ratio ĥφ
εφ

≈ 1 every-
where in the domain of interest, or a suitable combination of
the three options.

3.1. Details of the implementation for 1D systems

We consider 1D systems interacting via equation (18). Such
interaction is numerically unstable for large arguments, but
there are at least two ways to circumvent this issue. The first
is to truncate the function vQ1D(x) at some arbitrary small
value x0 and glue it with its large-x expansion, including the
Coulomb tail 1/|x|. An alternative approach (proposed by
Weideman and Reddy in reference [68]) is to derive a first

6
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Figure 2. Construction of the co-motion function for ρ̃ in the point
x0 = −9/20, for which we can read f (x0) ≈ 1.15. Inset: plot of the
density ρ̃ (see main text). Notice that, being the density non
symmetric, a1 �= 0 (vertical line both in the main plot and in the
inset).

Figure 3. KS eigenvalue in the LDA approximation (left) and in the
SCE approximation (right), at different correlation regimes
(different values of L) as a function of the number of iterations.
Insets: plot of the ratio ĥφ

εφ (orange) and the corresponding density in
uniformly scaled coordinates (blue).

order differential equation for vQ1D
int (x) given by

dvQ1D
int

dx
− x

2b2
vQ1D

int = − 1
2b2

, (43)

Figure 4. KS SCE computation, in scaled units (see main text,
equation (50)), for different N at different correlation regimes
(L = 1, 12, 29, 70, from the less diffuse to the most diffuse). Left:
bosons. Right: fermions.

which upon a change of variables x = s(1+t)
1−t takes the form

[68]

(1 − t)3 dvQ1D
int

dt
− s2

b2
vQ1D

int = (vQ1D
int − 1)

s
b2
. (44)

Equation (44) is solved on the domain t ∈ [0, 1] with the
derivative computed spectrally using Chebychev differentia-
tion matrices. We chose the latter in all of our simulations.

To explain the numerical implementation of the SCE func-
tional we consider here the special case of N = 2 (the general
case follows straightforwardly). The co-motion function f (x)
must satisfy (see equation (24)):∫ f (x)

x
ρ(t)dt = sign(a1 − x) (45)

In terms of the cumulant function

Ne(x) =
∫ x

−∞
ρ(t)dt, (46)

Equation (45) reads

Ne( f (x)) = Ne(x) + sign(a1 − x), (47)

and a1 is defined by Ne(a1) = 1.
For each point x0 we can then find the corresponding f (x0)

by minimisation:

f (x0) = arg min
t

{|Ne(x0) + sign(a1 − x0) − Ne(t)|} , (48)

avoiding the computation of the inverse function N−1
e (x),

which is problematic in regions where the density is very

7
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Figure 5. Comparison between the self-consistent ground state density in the KS LDA approximation, the KS SCE, the KS SCE + ZPE and
KS SCE + ZPEisi approximations with the exact many-body result (labeled ‘reference’).

small, with the cumulant Ne(x) approximately constant. As
an example, in figure 2 we illustrate this procedure for a two

electron density ρ̃(x) ∼ 0.96 e−(0.2x−0.5)2

1+x2 . For completeness, we
report more details on our 1D implementation in appendix B.

4. Results

In this section we report numerical test results that are obtained
with the external parabolic potential

vL
ext(x) =

8
L4

x2, (49)

which has been used to model quantum wires [36, 39]. Further-
more, it was also used, for the first time, in references [2, 4]
to test the SCE functional as an approximation to the true
Hartree and exchange correlation potential in a self-consistent
calculation. Such systems at very low density enter a ‘Wigner
molecule’ regime, see, e.g., reference [69].

The parameter L allows us to adjust the scale of the
parabolic external potential which in turn drives the system
continuously from the weakly correlated regime (L � 1) to
the highly correlated one (L � 1), as shown by the scaling

xi �→ x̃iL, b �→ b̃L, which transforms the Hamiltonian into

L2ĤL =
∑

i

(
−1

2
d2

dx̃2
i

+ v1
ext(x̃i) + L

∑
j>i

vQ1D
int (|x̃i − x̃ j|)

)
.

(50)
Typical values for the constant c range between c = 25 (for the
case L = 1) and c = 1 (for L = 70) for non scaled coordinates.
From equation (50), we see clearly that as L increases, the
interaction term becomes dominant and therefore the system
becomes more correlated.

4.1. LDA and SCE approximations

To probe the robustness of the algorithm with respect to the
initial guess, we solve the KS LDA and KS SCE equations by
starting in both cases the iteration with random initial orbitals
sampled from a uniformly distributed density function.

In figure 3, we show, for the case N = 2, the KS eigenvalue
ε as a function of the number of iterations within the LDA and
the SCE approximation. To check that we have solved the KS

equations, we plot in the inset the ratio ĥ[ρ]φ(x)
εφ(x) at convergence,

with ĥ the KS single-particle Hamiltonian, equation (12). We
clearly see from this figure that convergence becomes slower

8
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Figure 6. KS eigenvalue in the KS SCE + ZPE (top) and KS SCE + ZPEisi (bottom) scheme at different correlation regimes as a function
of the number of iterations. Insets: plot of the ratio ĥ[ρ]φ(x)

εφ(x) and the corresponding density in uniformly scaled coordinates.

(more iterations are needed) as the system becomes more and
more correlated (larger L). This is true for both the LDA and
the SCE cases.

In figure 4 we also plot the KS SCE computation for 4, 8
and 16 particles, for both bosons (left column) and fermions
(right column), at different correlation regimes. We clearly
see that, as the interparticle interaction becomes dominant
(large L), the bosonic and fermionic densities become more
and more similar. This is, however, different than the
Tonks–Girardeau mapping that applies to short-range inter-
actions. With the Coulomb interaction, both the bosonic and
fermionic systems enter the Wigner regime, in which the
effects of particle statistics become exponentially small in the
coupling-constant L [54]. The difference between the Wigner
regime and the Tonks–Girardeau case for the same 1D systems
treated here is very clearly illustrated in ref [70].

In figure 5 we show the densities obtained self-consistently
for different values of L, comparing them with those obtained
by an exact diagonalisation of the many-body Hamiltonian.
Both for the LDA and the SCE case we could confirm
the results of references [1, 2] (obtained with the Numerov
algorithm, using a shooting method and linear mixing for the
self-consistency), with a single exception. In fact, we note that
for the case L = 1 (panel a) our LDA computation gives a den-
sity which is sensibly different from the ones found, indepen-
dently, in figure 1 of reference [1] and in figure 7 of reference
[39], which were both very similar to each other and much
closer to the exact many-body density. However, the corre-
sponding inset in our figure 3 clearly shows that our result does
solve the KS–LDA equation, while we tested the density of

reference [1] and we found that ĥ[ρ]φ(x)
εφ(x) is not as close to 1 as

our new result.

As already explained in the introduction, we see that the
LDA breaks down as the system becomes more and more cor-
related (large L), while KS SCE gives densities that are closer
and closer to the exact many-body ones.

4.2. The SCE + ZPE and ZPEisi approximations

The potential vZPE([ρ], x) has divergences that make the
convergence of the KS SCE + ZPE equations extremely
challenging. In this work we were able for the first time to
reach convergence in some cases, but we had to use a more
regular initial guess, namely φ0(x) ∼ cosh−1(x).

We report in figure 6 the KS eigenvalue as a function of the
number of iterations and, again, in the inset we show the ratio
ĥ[ρ]φ(x)
εφ(x) at convergence. We clearly see that it is much harder to

converge the KS equations with this functional.
Looking at figure 5, it is clear that the KS SCE + ZPE func-

tional localizes the density more, compared to SCE alone, in all
the cases studied. In the following, we will argue that this is due
to the predominance of vHxc([ρ], x), in the SCE + ZPE approx-
imation, with respect to the external potential in equation (49)
at large x. To illustrate this, we first show in figure 7 the self-
consistent vHxc(x) of equation (29) for various L. For the case
L = 70, for the reasons just outlined, we were not been able to
reach convergence. Therefore, we omitted such case from our
discussion of the results, both for ZPE and ZPEisi approaches.

We can clearly see that for x ≈ 0 and x ≈ ±∞, vHxc([ρ], x)
diverges: this is a consequence of the predominance of the
frequency ω([ρ], x) which diverges where either ρ(x) → 0 or
ρ( f (x)) → 0,

ω([ρ], x) ∼ 1
x3/2

√
ρ(0)
ρ(x)

∼ ea x2
2

x3/2
x →∞, (51)

9
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Figure 7. vHxc([ρ], x) in the SCE + ZPE approximation for different
values of L. Inset: we plot the vHxc([ρ], x) in the whole
computational box: as it can be seen, it diverges very rapidly at all
characteristic length L, and becomes numerically unstable at large x,
in a region where the density is ≈ 0.

where we made use of the fact that in our case ρ(x) ∼
exp(−ax2) for large x, since the dominant term becomes the
parabolic potential.

Defining the scaling

x → t
α2/3

, α =

√
8

L2
(52)

and defining the scaled density ργ(x) = γρ(γx), the single par-
ticle KS–SCE + ZPE Hamiltonian can be expanded at large x
according to

ĥα

α2/3
= −α2/3

2
d2

dt2
+ t2 + ṽSCE[ρα2/3](t) + α1/3ω([ρα2/3], t),

(53)
where we have used the fact that [29, 71]

ṽSCE([ργ], x/γ) = γṽSCE([ρ], x), (54a)

vZPE([ρ], x) → ω([ρ], x) x →∞, (54b)

f i([ργ], x) =
1
γ

f i([ρ], γx). (54c)

Looking at equation (53), we can see that, although as L
increases (α→ 0) the kinetic energy and the ZPE term become
negligible with respect to the external and the SCE potentials,
for any fixed α. However, due to equation (51), it is always
possible to find t large enough such that the ZPE term becomes
dominant with respect to the external potential, resulting in a
stronger confinement of the density.

It is also very interesting to note that, as figure 5 shows,
the self-consistent KS SCE + ZPE densities do not improve
systematically towards the exact many-body ones with respect
to the bare KS SCE case. While for the energy evaluated at
a given density the SCE + ZPE has been shown to approxi-
mate the exact many body energy [54] very closely at strong
coupling (and better than SCE alone), the exact KS poten-
tial clearly is not well approximated at strong coupling by the
SCE + ZPE. Most probably, the expansion of the potential at
strong coupling is not uniform, having different relevant scaled
variables in different regions of space (e.g., classically allowed
and classically forbidden regions). This point needs further
investigation, which will be the object of future work.

Table 1. Total energies for different approximations for N = 2
compared to the exact many-body case.

L 1 12 29 70

exact 6.92367 0.13943 0.04028 0.01152
SCE—reference [2] 5.64063 0.12161 0.03773 0.01119
SCE—this work 5.64119 0.12142 0.03768 0.01104
ZPE 8.11878 0.15535 0.04308
ZPEisi 6.76139 0.15340 0.04283

Figure 8. Ratio between the total energies from the approximations
discussed in the main text and the numerically accurate one, for
increasing correlation regimes (L = 1, 12, 29, 70) for N = 2.

Table 2. KS highest occupied orbital energy for the LDA and SCE
approximations compared with the exact many-body chemical
potential for N = 2.

L 1 12 29 70

exact 4.92567 0.13443 0.03790 0.01112
SCE 3.94900 0.13664 0.03730 0.01126
LDA 7.18306 0.34539 0.12192 0.04148

As for the ZPEisi approximation, it seems that it weakly
acts as a correction to the SCE + ZPE approximation although
towards the exact result, with a greater effect at lower correla-
tion regimes. In table 1, we compare the total energies within
the different approximations (see also figure 8). Finally, in
table 2 we report the highest occupied KS eigenvalue compar-
ing it with the exact many-body chemical potential for SCE
and LDA (for functionals with the ZPE case this comparison
would not be meaningful as the Hxc potential does not go to
zero when |x| →∞).

5. Conclusions and outlook

Building upon a successful use in other fields (mainly non-
linear photonics), in this paper we suggest and implement the
spectral renormalization method as a mean to obtain numer-
ical solutions for Kohn–Sham-type equations, focussing on
the challenging case of xc functionals based on the strictly-
correlated regime.

We have implemented this scheme on benchmark prob-
lems using the KS equation as a test bed, obtaining for
the first time self-consistent results with the SCE + ZPE
functional, at least for systems not too close to the strong-
coupling regime. These results showed that the ZPE functional

10
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implemented self consistently does not improve results with
respect to the bare SCE case alone, suggesting the exact KS
potential at strong coupling must have a different kind of
expansion. We also have implemented the interaction-strength
interpolation showing that it corrects partially the extreme fea-
tures of the ZPE regime; finally, we obtained a better con-
verged result for an LDA computation appeared in previous
works. The key features of the algorithm used in this work
can be summarized as follows. (i) Ease of implementation.
Most real-space algorithms are based on either eigenvalue type
solvers or shooting methods where finite-difference scheme
is the method of choice to discretize space (kinetic energy).
As such, low numerical accuracy is often used (second order
as an example) as a trade off to numerical implementation.
In our proposed scheme, the accuracy is spectral, all poten-
tials are computed pseudo-spectrally and the implementation
is straightforward making the coding process easy and sim-
ple. (ii) Dependence on initial guesses. It is a well-known fact
that many fixed point iteration algorithms either fail to con-
verge or show poor dependence on initial guesses. To test the
robustness of the SR algorithm against initial guesses, we ran
many simulations where (a) Gaussian-type (narrow or wide
with either low or high amplitude) and (b) random function
with uniform distribution were used to initialize the iteration.
Both approaches gave indistinguishable final results, even on
multiple runs. These tests were successful by using both the
LDA and the SCE functional as approximations for the xc
energy. The work reported in this paper gives us a solid basis

to explore in future work new physics related to strongly corre-
lated many-body Anderson localization by using the KS SCE
approach.
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Appendix A. Spectral renormalization algorithm

For clarity, we shall now write up the fixed-point scheme in
detail for both bosons and fermions.

A.1. Bosons

In this case only one orbital φ (r) is needed. Let φ(n)(r) be the
approximation for the orbital at iteration n. Then we define

φ(n+1/2) (r) =
φ(n)(r)
‖φ(n)‖ , (A1)

ρ(n+1/2) (r) = N|φ(n+1/2) (r) |2, (A2)

and the updated (new) eigenvalueε(n+1/2) and orbitalφ(n+1) (r)
are obtained in Fourier space from the following fixed point
iteration:

ε(n+1/2) =

∫
dr
{

1
2
|∇φ(n+1/2)(r)|2 + vKS

(
[ρ(n+1/2)], r

)
|φ(n+1/2)(r)|2

}
, (A3)

φ̂(n+1) (k) = − F
[
vKS
(
[ρ(n+1/2)], r

)
φ(n+1/2) (r)

]
− θ
(
ε(n+1/2)

) (
ε(n+1/2) + c

)
φ̂(n+1/2) (k)

|k|2
2 − ε(n+1/2) + θ

(
ε(n+1/2)

) (
ε(n+1/2) + c

) , (A4)

where ‖φ( j)‖2 is the norm of the orbital defined by ‖φ( j)‖2 =∫
|φ( j)(r)|2d(r) and θ(x) is the Heaviside step function.

After each iteration step the orbital in real space is obtained
from

φ(n+1) (r) = F−1
[
φ̂(n+1) (k)

]
. (A5)

A.2. Fermions

For simplicity we consider an even number of fermions with
spin 1/2. In contrast to the bosonic case, now N/2 orbitals
φi (r) are needed (see equation (13)). At each iteration step n
we normalize each orbital

φ
(n+1/2)
i (r) =

φ(n)
i (r)

‖φ(n)
i ‖

, (i = 1, . . . , N/2). (A6)

followed by proper orthogonalization procedure such as the
Gram–Schmidt or the Löwdin scheme. Then,

ρ(n+1/2) = 2
N/2∑
i=1

∣∣∣φ(n+1/2)
i (r)

∣∣∣2. (A7)

Now, the fixed-point iteration reads

ε
(n+1/2)
i =

∫
dr

⎧⎪⎨
⎪⎩
∣∣∣∇φ

(n+1/2)
i (r)

∣∣∣2
2

+ vKS

(
[ρ(n+1/2)], r

)

×
∣∣∣φ(n+1/2)

i (r)
∣∣∣2} , (A8)
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φ̂i
(n+1) (k) = −

F
[
vKS
(
[ρ(n+1/2)], r

)
φ

(n+1/2)
i (r)

]
− θ
(
ε

(n+1/2)
i

)(
ε

(n+1/2)
i + c

)
φ̂(n+1/2) (k)

|k|2
2 − ε

(n+1/2)
i + θ

(
ε

(n+1/2)
i

)(
ε

(n+1/2)
i + c

) . (A9)

As in the previous case, the iteration is concluded by
reverting to real space

φ(n+1)
i (r) = F−1

[
φ̂(n+1)

i (k)
]
. (A10)

Appendix B. Details of the 1D numerical
implementation

B.1. Computation of the Hartree potential

Another aspect, with respect to previous implementations of
the SR algorithm for the Gross–Pitaevskii equation [31–35] is
the numerical evaluation of the Hartree term

vH ([ρ], r) =
∫

dr′ vint
(
|r − r′|

)
ρ(r′), (B1)

which, due to the slow decay of the effective Coulomb inter-
action (vint), makes the implementation of Fourier based
convolutional schemes problematic. However, by properly
adjusting the effective Coulomb interaction (while keeping its
true far field Coulomb characteristic) one can still take advan-
tage of the fast discrete Fourier transform algorithm. One way
to achieve this goal is to multiply the Hartree interaction by the
so-called mollifier p(x) defined by

p(x) =

⎧⎪⎨
⎪⎩

exp

[
ξ

x2 − L2
c

]
for |x| < Lc

0 for |x| > Lc

(B2)

with Lc denoting an arbitrary cutoff which, for a computational
domain of size Ld, can be chosen as 0.9Ld and ξ is a positive
small parameter of the order of 10−4. The ‘mollified’ effective
Coulomb interaction vp

int is now given by vp
int ≡ p(x)vint with

the Hartree potential

vH ([ρ], r) =
∫

dr′ vp
int

(
|r − r′|

)
ρ(r′). (B3)

With this at hand, the numerical evaluation of the Hartree
potential follows from the convolutional FFT algorithm, i.e.,

vH ([ρ], r) = 2πF−1
[
F
(
vp

int

)
F (ρ)

]
. (B4)

In figure 9, we show a typical behavior of the effective
Coulomb potential with (orange) and without (red) a mollifier.
For comparison, we also add the direct evaluation of vQ1D

int (x)
(in blue).

Figure 9. The interaction vQ1D
int (x) is numerically unstable already at

x ≈ 6 (solid line, in blue). On the other hand, solution of
equation (44) (in red) remains numerically stable at greater
distances. Finally, we plot in orange the ‘mollified’ effective
Coulomb interaction vp

int which overlaps with vQ1D
int (x) in the inner

part of the box, while smoothly going to 0 at the boundaries.

Figure 10. Comparison between g(z) (red, solid) and g̃(z) (violet,
dashed). The two curves are almost on top. Moreover, g̃(z) is still
evaluated exactly at large arguments, while g(z) shows numerical
instability already at z ∼ 6.

B.2. LDA for electrons in 1D

The energy density εxc(ρ) can be decomposed in its exchange
and correlation part respectively

εxc(ρ) = εx(ρ) + εc(ρ). (B5)

For electrons in 1D with the interaction given by equation (18),
the exchange energy is known analytically,

εx(ρ) = −1
2
ρ g (bπ ρ) , (B6)
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Table 3. List of coefficients used in equation (B8).

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

am 1.211 39 0.132 454 0.027 6020 0.005 332 83 0.000 892 750 0.000 129 7100 0.000 016 5559 0
bm 1.000 00 0.166 667 0.033 3333 0.005 952 38 0.000 126 263 0.000 015 2625 0 0
cm 0 −1.288 6100 −0.1666 6667 0.1 −0.142 857 0.333 333 3333 −1.090 909 090 91 4.615 38

Table 4. The set of parameters used in equation (B10) for b = 0.1
in the interaction (18).

A B C α β n m

4.66 2.092 3.735 23.63 109.9 1.379 1.837

with the function

g(z) =
1

2z2

{
−γ + exp(z2)Ei(−z2) − 2 ln z

+ G2,2
2,3

(
z2

∣∣∣∣∣ 1,
3
2

1, 1, 2

)}
. (B7)

Here, γ = −0.577 216 is Euler’s constant, Ei(u) =
−P
∫∞
−u

e−z

z dt is the exponential integral function, and G
denotes the Meijer G function. As the analytical g(z) is
numerically unstable, we expand g(z) = g<(z) +O(z14) for
small z and g(z) = g>(z) +O(z−16) for large t,

g<(z) =
7∑

m=0

[
am − bm log(z)

]
z2 m, (B8a)

g>(z) =
π3/2

2z
− log(z)

z2
+

7∑
m=0

cmz−2 m. (B8b)

As the minimum difference |g<(z) − g>(z)|, occurring at z =
z0 ≈ 1.68, is extremely small, we simply truncate the two
expansions, to obtain the approximation

g(z) ≈ g̃(z) ≡
{

g<(z) z � z0,

g>(z) z > z0.
(B9)

Notice the small discontinuity of g̃(z) at z0 in figure 10. The
coefficients am, bm, cm of equation (B8) are listed in table 3.

For the correlation energy, we use the parametrization from
reference [38],

εc(rs) = −1
2

rs

A + Brn
s + Cr2

s
ln(1 + αrs + βrm

s ), (B10)

with the 1D density parameter rs =
1

2ρ . The values of the 7
parameters A, B, C, n,α, β, m are different for different values
of b, see table 4 of reference [38]. For convenience of the
reader, we report them in table 4.
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