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We analyse a path to construct density functionals for the dispersion interaction energy

from an expression in terms of the ground state densities and exchange–correlation

holes of the isolated fragments. The expression is based on a constrained search

formalism for a supramolecular wavefunction that is forced to leave the diagonal of the

many-body density matrix of each fragment unchanged, and is exact for the interaction

between one-electron densities. We discuss several aspects: the necessary features of

a density functional approximation for the exchange–correlation holes of the

monomers, the optimal choice of the one-electron basis (named “dispersals”), and the

functional derivative with respect to monomer density variations.
1 Introduction

London Dispersion forces are crucial in physics, chemistry and biology; one of
their most wondrous properties is that they make “everything‡ stick to every-
thing”.1 Density Functional Theory (DFT) approximations have difficulties in
describing dispersion interactions, which stem from the inherent non-locality of
the phenomenon. Attempts at building non-local functionals to capture disper-
sion have been somewhat successful,2–4 especially in calculations on solids,3,5 but
they are typically outcompeted in practical calculations onmolecules by empirical
corrections based on pairwise atomic dispersion coefficients derived from free
atoms6,7 or on free atomic polarizabilities combined with dipole moments of the
exchange hole.8 However, these empirical corrections are only able to take into
account the effects of the chemical environment of the atom in a limited way and
do not model anisotropy in the dispersion coefficients. For very recent reviews on
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the topic, including different angles and perspectives, see, for example, ref. 4, 9
and 10.

Within a DFT framework, a microscopic model of the dispersion mechanism
based only on ground-state properties is highly desirable in order to provide
a basis to build approximate correlation functionals able to capture dispersion.
The exchange-hole dipole moment (XDM) model of Becke and Johnson8 was
a step in this direction; however, it still requires the atomic polarizabilities as
input. A good real-space modeling of the inherent mechanism behind dispersion
is also important to address strongly correlated systems. For example, dispersion
between localised d or f electrons can also play an important role at equilibrium
geometries.

It is the purpose of this paper to provide and analyze a microscopic model of
dispersion based on the ground-state densities and exchange–correlation holes of
the fragments only. The framework is based on our recent work11 on a class of
variational wavefunctions that capture the long-range interaction between two
systems without changing the diagonal of the density matrix of each monomer.
The advantage is that in this way dispersion becomes a simple competition
between kinetic energy and monomer–monomer interaction, as all the remaining
potential energy terms inside each monomer are not allowed to change and
cancel out in the interaction energy. The formalism is thus analogous to the Levy-
constrained search for the universal ground-state energy density functional,12 as
we will explain in section 2.

Although this variational wavefunction is certainly not exact by construction
(see also the discussion in section 3), it can yield accurate or even exact results for
the dispersion coefficients when combined with accurate pair densities of the
monomers.11,13 While in our previous work we mainly took a purely wavefunction
perspective, in this article we focus primarily on the theoretical aspects of the use
of our framework to build DFT approximations for dispersion, also discussing the
(possible) violations of the Hellman–Feynman, Hohenberg–Kohn and virial
theorems. We also report the functional derivative and discuss which features of
the monomer xc-hole approximations are really needed. Finally, we analyze the
one-body functions needed to expand our wavefunction, which we have named
“dispersals”. We look into the vector space of these dispersals and discuss
equations for an optimal nite set of dispersals. We describe an approach to
generate atomic dispersals, which can be combined into molecular dispersals to
limit the computational cost of the procedure in future work.

2 Theory

We consider two neutral systems (atoms, molecules) A and B separated by a large
distance R, having isolated ground-state wavefunctions JA

0(xA) and JB
0(xB), with

xA/B denoting the set of all their electronic spin-spatial coordinates. We dene the
“xed diagonal matrices” (FDM) dispersion energy EFDMdisp between A and B via the
following constrained minimisation problem:

EFDM
disp ðRÞ ¼ min

JR/jJA
0 j2 ;jJB

0 j2
D
JR

���T̂ þ V̂
AB

ee

���JR

E
�
D
JA

0 J
B
0

���T̂ þ V̂
AB

ee

���JA
0 J

B
0

E
; (1)

where T̂ is the usual kinetic energy operator acting on the full set of variables
xA,xB, and
146 | Faraday Discuss., 2020, 224, 145–165 This journal is © The Royal Society of Chemistry 2020
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V̂
AB

ee ¼
X

i˛A;j˛B

1��ri � rj
��: (2)

The notation JR / |JA
0|

2,|JB
0|

2 means that the wavefunction JR(xA,xB) is
forced to leave the diagonal of the many-body density matrix of each fragment
unchanged: ð

dxB

��JRðxA; xBÞ
��2 ¼ ��JA

0 ðxAÞ
��2; (3)

ð
dxA

��JRðxA; xBÞ
��2 ¼ ��JB

0 ðxBÞ
��2: (4)

The wavefunction JR in eqn (1) is searched over all wavefunctions antisym-
metric only in the xA and xB variables separately, so that we are not considering
the energy terms vanishing exponentially with R due to the antisymmetrization
between A and B. That is, we work within the polarization approximation, as usual
for dispersion. Eqn (1) can also be written in the simpler form

EFDM
disp ðRÞ ¼ min

JR/

��JA
0

��2 ;��JB
0

��2
D
JR

���T̂ þ V̂
AB

ee

���JR

E
� TA

0 � TB
0 �U

�
rA; rB

�
; (5)

with TA/B0 the ground-state kinetic energies of the two separated systems and

U
�
rA; rB

� ¼ ð dr ð dr0 rAðrÞrB�r0���r� r0
�� ; (6)

with rA/B(r), the monomer ground-state densities, corresponding to |JA/B
0 |2. The

constraints of eqn (3) and (4) ensure that EFDMdisp is a variational approximation for
the interaction energy in the polarization approximation, since all the intra-
monomer potential energy terms (electrons–nuclei and electrons–electrons)
cancel out exactly in EFDMdisp as they are fully determined by |JA

0|
2 and |JB

0|
2. Thus,

EFDM
disp (R) + U[rA,rB] + Vext,A[rB] + Vext,B[rA] $ Epol(R), (7)

where Vext,A/B[rB/A] denotes the interaction of the electrons in B/A with the external
potential of the nuclei in A/B. The interaction energy within the polarization
approximation is dened as

Epol(R) ¼ EAB,pol(R) � EA
0 � EB

0 , (8)

where EA/B0 are the ground-state energies of the two separated systems and EAB,pol(R) is
the ground-state energy of the combined systems within the polarization approxi-
mation. The physics behind EFDMdisp (R) is very simple: the correlation of the electrons in
A with those in B lowers the expectation value of V̂AB

ee while increasing the kinetic
energy. By eliminating the role of the intrafragment potential energy, dispersion is
reduced here to a competition between these two effects, providing a microscopic
mechanism using a ground-state formalism. However, we should immediately
remark that this is not what happens in the exact case where the intramonomer
potential energy terms are not unchanged but increase and the kinetic energy
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 224, 145–165 | 147
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decreases. This aspect will be fully analysed in section 3, where we will show how the
intramonomer energy is reshuffled between potential and kinetic energy to still yield
the exact result for any two one-electron monomers, and still be rather accurate for
closed-shell atoms and molecules, as we reported in ref. 11 and 13.

We should also mention that xing the diagonal of the full many-body density
matrix of each monomer is not the minimal variational restriction needed to
make the intrafragment potential energy terms cancel out in the interaction
energy. Keeping only the pair densities PA/B2 (r,r0) of the two monomers unchanged
would be enough. The xed-pair densities (FPD) dispersion energy,

EFPD
disp ðRÞ ¼ min

JR/PA
2
;PB

2

D
JR

���T̂ þ V̂
AB

ee

���JR

E
� TA

0 � TB
0 �U

�
rA; rB

�
; (9)

would have more variational freedom, implying EFDMdisp (R) $ EFPDdisp(R). However, as we
will detail below, the construction keeping the full many-body diagonal xed takes
a rather simplied form, leading in a natural way to the dispersion energy as a func-
tional of the ground-state pair densities (or density and xc holes) of the two fragments.
2.1 Variational ansatz for the FDM wavefunction

A variational ansatz for the minimising wavefunction JR in eqn (5) can be
explicitly constructed following our recent work,11 which we review here, rewriting
it and analysing it in terms of DFT quantities. The ansatz reads as

JRðxA; xBÞ ¼ JA
0 ðxAÞJB

0 ðxBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X
i˛A;j˛B

JR
�
ri; rj

�s
; (10)

where, as long as we deal with the situation at large R, we have |JR|� 1. In fact, to
leading order we nd variationally that JR f R�3. The Jastrow-like function JR is
expanded in a nite set of “dispersals” bi(r), introducing a set of variational
parameters cij,R,

JRðr1; r2Þ ¼
X
ij

cij;Rb
A
i ðr1ÞbBj ðr2Þ: (11)

The many-body density constraints of eqn (3) and (4) can be easily enforced by
imposing the conditions ð

drbAi ðrÞrAðrÞ ¼ 0ci; (12)

ð
drbBj ðrÞrBðrÞ ¼ 0cj; (13)

which reduces to a Gram–Schmidt orthogonalization w.r.t. the electron density,
rewriting the dispersals bi(r) in the form:

biðrÞ ¼ fiðrÞ � 1

N

ð
dr0r

�
r0
�
fi
�
r0
� ¼: fiðrÞ � pi; (14)

where fi(r) is the set of dispersals before the Gram–Schmidt orthogonalization.
We should remark that the ansatz of eqn (10) does not exhaust the space of all

possible FDM wavefunctions. As such, it yields an upper bound to the FDM
dispersion energy dened in eqn (5). The ansatz is exact for any pair of one-electron
148 | Faraday Discuss., 2020, 224, 145–165 This journal is © The Royal Society of Chemistry 2020
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systems A and B,11 and rather accurate for closed-shell many-electron systems.13 In
a loose way, in the following we denote the interaction energy obtained by a varia-
tional optimisation on the class of wavefunctions eqn (10) FDM dispersion energy,
although, strictly speaking, it is only a variational upper bound to.
2.2 Intermonomer pair density and xc-hole projection

The ansatz for JR corresponds to the following intermonomer dispersion pair-
density: PABdisp(rA,rB) ¼ PAB(rA,rB) � rA(rA)r

B(rB),

PAB
dispðrA; rBÞ ¼ rAðrAÞrBðrBÞ

X
ij

cij;RDb
A
i;xcðrAÞDbBj;xcðrBÞ; (15)

where the difference DbA/Bi,xc(r) between each dispersal bA/Bi (r) and its exchange–
correlation (xc) hole projection bA/Bi,xc(r) is

DbA/B
i,xc (r) ¼ bA/B

i (r) � bA/B
i,xc (r), (16a)

b
A=B
i;xc ðrÞ ¼ �

ð
hA=B
xc

�
r; r0
�
b
A=B
i

�
r0
�
dr0 (16b)

with the usual denition of the xc-hole

hA=B
xc ðr1; r2Þ ¼ P

A=B
2 ðr1; r2Þ
rA=Bðr1Þ � rA=Bðr2Þ; (17)

where PA/B2 (r1,r2) is the ground-state pair density of each isolated monomer, nor-
malised to NA/B(NA/B � 1).

The properties and the idea of the xc-hole projection were studied in ref. 14,
where for any multiplicative monoelectron operator Ô ¼

X
i

oðriÞ an associated xc-

hole projected operator Ôxc ¼
X
i

oxcðriÞ was dened, with

oxcðrÞ ¼ �
ð
hxc
�
r; r0
�
o
�
r0
�
dr0: (18)

By virtue of the sum rules obeyed by the xc-hole (simply due to the normal-
isation of the pair density), ð

dr0hxc
�
r; r0
� ¼ �1 (19a)

ð
drrðrÞhxc

�
r; r0
� ¼ �r�r0�; (19b)

Ô and Ôxc have the same ground-state expectation value:D
J

���Ô���JE ¼
D
J

���Ôxc

���JE ¼
ð
drrðrÞoðrÞ ¼

ð
drrðrÞoxcðrÞ: (20)

For example, if o(r) ¼ r, then rxc(r) is the position of the xc-hole barycenter of
charge. In this case, eqn (20) simply shows that the expectation value of the
electronic dipole moment can also be computed as a weighted sum of the xc-hole
barycenters, which can be regarded14 as a generalisation of the Wannier-center
decomposition of the polarization.15
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 224, 145–165 | 149
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Clearly, it always holds that Doxc(r)¼ o(r)� oxc(r) has zero expectation value for
any monoelectron local operator. In our case, the bi(r) dispersals (and thus their
associated bi,xc) have also zero expectation value separately, by construction. It is
then also evident that PABdisp(rA,rB) of eqn (15) has zero marginals (as it should,
since it is not allowed to alter the ground-state monomer densities),ð

PAB
dispðrA; rBÞdrA ¼

ð
PAB

dispðrA; rBÞdrB ¼ 0: (21)

2.3 The FDM dispersion energy

The dispersion energy EFDMdisp (R) can then be computed from our ansatz wave-
function in terms of the variational parameters cij,R, whose optimisation takes
a simple form, as we briey review here.11,13 We rst rewrite eqn (5) as

EFDM
disp

�
rA; rB; hAxc; h

B
xc

�ðRÞ ¼ min
cij;R

~E
FDM

disp

�
rA; rB; hAxc; h

B
xc

���
cij;R
	�

; (22)

where the expression ~EFDMdisp [r
A,rB,hAxc,h

B
xc]({cij,R}) is computed from the expectation

value on JR as follows. The expectation value of VABee is just an integral with the
intermonomer pair density PABdisp(rA,rB) of eqn (15) and it is thus linear in the varia-
tional parameters. The kinetic energy is slightly more involved, but can be expanded
through second order in the cij,R, which are small by construction (see the ESI of ref.
11 for the full derivation), leading to a quadratic dependence on the cij,R. We should
stress that the linear term in the kinetic energy disappears only by virtue of the xed-
diagonal densitymatrices constraint.11 The energy ~EFDMdisp ({cij,R}) through second order
in the cij,R (denoted below as simply cij for convenience) thus takes the form

~E
FDM

disp

�
rA; rB; hAxc; h

B
xc

���
cij
	� ¼X

ij

cijwij þ 1

8

X
ijkl

cijckl



sAikS

B
jl þ SA

iks
B
jl

�
; (23)

where

wij ¼
ð
drAdrBwdispðrA; rBÞrAðrAÞrBðrBÞDbAi;xcðrAÞDbBj;xcðrBÞ (24a)

sA=B
ij ¼

ð
drrA=BðrÞVbA=B

i ðrÞ$VbA=B
j ðrÞ; (24b)

S
A=B
ij ¼

ð
drrA=BðrÞbA=B

i ðrÞDbA=B
j;xc ðrÞ: (24c)

In eqn (24a) the intermonomer interaction wdisp(rA,rB) is simply 1/|rA � rB| or,
equivalently, 1/|rA� rB|� vBext(r1) + v

A
ext(r2). In fact, by virtue of eqn (21), any term in

the interaction which does not contain both variables rA and rB has zero expec-
tation value, so that both electrostatics and induction do not appear in EFDMdisp .

With respect to our previous work,11 there are some differences in notation: S
now denotes the quantity that was referred to as S + P. Although not immediately
evident, the matrix S of eqn (24c) is symmetric by virtue of the xc-hole denition.
Furthermore, the expression here is written in terms of the exchange–correlation
hole projected dispersals instead of the isolated monomer pair densities. Aside
from bringing it in line with the notation commonly used in DFT, the expressions
150 | Faraday Discuss., 2020, 224, 145–165 This journal is © The Royal Society of Chemistry 2020
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of eqn (24a)–(24c) have the advantage of being immediately invariant under
a constant shi of the dispersals. More explicitly, if one substitutes bi(r) ¼ fi(r) �
pi, then bi(r) in eqn (24) are simply substituted by fi(r).

Since the energy in eqn (23) is quadratic and we have no additional
constraints, we can obtain cij by solving a linear system. However, the exact
solution of this linear system scales as O ðnA3nB3Þ, where nA/B is the number of
functions bA/Bi included in the calculation. This can be reduced to O ðnA3 þ nB3Þ for
every pair of systems A and B by diagonalizing the matrix S using e.g. a Löwdin
orthogonalization. In that case, the solution of eqn (22) results in the solution of
a Sylvester equation, as described in ref. 11,

1

4
sAcþ 1

4
csB ¼ �w: (25)

A further simplication can be made by instead solving the generalized
eigenvalue problem for the matrix sAij with SAij as a metric (similarly for system B).13

In this case, we directly obtain a solution to the minimization, which takes the
simplied form (where from now on the indices ij indicate the transformed
dispersals)

cij ¼ � 4wij

sAi þ sBj
; (26)

and leads to the FDM dispersion energy in terms of rA,rB,hAxc,h
B
xc, and as a function

of the monomer–monomer distance R which enters in wij

EFDM
disp

�
rA; rB; hAxc; h

B
xc

�ðRÞ ¼ �2
X
ij

wij
2

sAi þ sBj
: (27)

The computational scaling is then still O ðnA3 þ nB3Þ due to the diagonalisation
of sA/Bij , but we only need to perform the diagonalisation once for each system
instead of solving it for every pair of systems.

Eqn (27) provides the dispersion energy as a function of the monomer–
monomer distance R and their orientation. If we want to compute dispersion
coefficients, we need to expand the interaction between the two neutral systems in
terms of multipoles,

wdispðr1A; r1BÞ ¼
XN
n¼3

wint
ðnÞðr1A; r1BÞ
Rn

; (28)

where wint
(n)(r1A,r1B) is a sum of separable terms in r1A and r1B, which, due to the

linearity of wij in the cij,R, leads to an expansion of the coefficients cij,R of the form

cij;R ¼
XN
n¼3

cij
ðnÞ

Rn
: (29)

The energy is then given as a power series in orders of 1/R as

EFDM
disp

�
rA; rB; hAxc; h

B
xc

�ðRÞ ¼ �
XN
m;n¼3

2

Rmþn

X
ij

wij
ðnÞwij

ðmÞ

sAi þ sBj
; (30)
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 224, 145–165 | 151
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where wij
(n) is dened similarly to wij in eqn (24a), but with wint

(n) instead of wint,
thus becoming products of single-monomer integrals. The corresponding
expressions for the dispersion coefficients are

CFDM
n

�
rA; rB; hAxc; h

B
xc

� ¼ X
pþq¼n

2
X
ij

wij
ðpÞwij

ðqÞ

sAi þ sBj
: (31)

Notice that these CFDM
n are orientation-dependent through the wij

(p/q).

2.4 FDM accuracy for the dispersion coefficients

Before considering making approximations for the xc holes of the monomers, one
should ask the question: how accurate can the FDM dispersion energy be if we use
the exact densities and xc holes of the monomers? In other words, is the variational
freedom (with xed diagonal density matrices) too small to give accurate results
even if we treat the monomers exactly? In ref. 11 the CFDM

n coefficients have been
computed for the H–H case, using simple multipoles for the dispersal functions
bi(r). It has been found that the FDM results yield the exact C6, C8 and C10, and the
exact second-order results for all the even Cn up to C30, with a fast convergence with
the number of dispersals bi(r). Results for the He–He and He–H cases have a very
small error, �0.17%, when using the very accurate He xc-hole of ref. 16.

In ref. 13, CFDM
6 coefficients have been computed for 459 pairs of atoms, ions

and molecules using Hartree–Fock, MP2 and CCSD densities and xc-holes for the
monomers, again using simple multipoles for the dispersals bi(r),

bi(r) ¼ (x � x0)
si(y � y0)

ti (z � z0)
ui, (32)

centred in r0 ¼ (x0, y0, z0), xed at the barycenter of nuclear mass, and where si, ti, ui
are the multipole parameters. For closed-shell atoms and molecules, the isotropic
CFDM
6 coefficients using CCSD xc-holes and densities for the monomers have errors

around 7%, with little sensitivity to the basis set used for the monomer calculations.
Anisotropies have a very similar accuracy. In contrast, the results for open-shell
systems are less accurate. The FDM should thus provide a good basis to build
real-space dispersion models for closed-shell systems. For open-shell systems some
more understanding and improvement is needed.

Before discussing how to build approximations and how to nd an optimal choice
for the dispersals bi(r), we clarify some theoretical aspects of the FDM framework.

3 Hellmann–Feynman, Hohenberg–Kohn and
virial theorems

In the case of two hydrogen atoms something remarkable occurs: due to the lack
of induction the FDM wavefunction gives the exact energy up to the order O ðR�10Þ.
This opens three theoretical questions.

3.1 Hellmann–Feynman theorem

The rst question is how we can obtain a dispersion force without density distor-
tion, despite Feynman’s statement that “it is the attraction of each nucleus for the
distorted charge distribution of its own electrons that gives the attractive 1/R7
152 | Faraday Discuss., 2020, 224, 145–165 This journal is © The Royal Society of Chemistry 2020
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force”,17 and despite this statement having been proven for molecules by Hunt18

using the electrostatic Hellmann–Feynman theorem. This question can be
answered by looking at Steiner’s 1973 paper,19 where he noted that the Hellmann–
Feynman result depends on whether one performs the derivative with respect to the
nuclear position in the original coordinates or in the coordinates in which the
electrons are centred on their respective nuclei. In the rst case, one obtains the
result by Feynman and the C6 coefficient in the force depends on the wavefunctions
perturbed to rst-order in the dipole–dipole and dipole–quadrupole interactions, as
well as those perturbed to second-order in both the dipole–dipole and dipole–
quadrupole interactions. In the second case one obtains the usual result, where the
C6 coefficient depends only on the wavefunction perturbed to rst-order in the
dipole–dipole interaction (per theWigner 2n + 1 rule). The connection to the density
stems from the fact that the expressions in the rst case depend only on the density
distortion at order R�7, while in the second case they depend only on the distortion
of the interfragment pair density at order R�3, which is exact in the FDM approach.
Physically speaking, in the rst case one computes the force acting on the nucleus,
while in the second case one computes the force acting on the whole atom. Since we
are in the approximation of innite nuclear mass, these two forces are exactly the
same, so there should be no contradiction.

3.2 Hohenberg–Kohn theorem

The second question is if the Hohenberg–Kohn theorem is violated by having an
electron density (namely, the sum of the two non-interacting H densities) which is
different than the exact one, but yields an energy that is exact up to and including
the order O ðR�10Þ. As was found by Hirschfelder and Eliason,20 the exact density
change is of the order O ðR�6Þ for two hydrogen atoms, while the FDM density is
equal to its zero-order value at all orders in R�1 by construction. From the point of
view of perturbation theory, this is in agreement with the Wigner 2n + 1 rule: the
FDM wavefunction can be exact up to O ðR�5Þ for atoms and can thus yield the
exact energy at O ðR�10Þ.

3.3 Virial theorem

The third question is what happens with the virial theorem when using the
variational FDM wavefunction. In the FDM framework there is by construction an
increase in the electronic kinetic energy coupled with a decrease in the (potential)
interaction energy, while the other two components of the potential energy, the
intra-fragment electrons–nuclei and electron–electron interactions, remain
unchanged. We compare this to the exact case: from the virial theorem,21 for two
neutral atoms separated by a large distance R we obtain

hTiR ¼ �E � R
dE

dR
; (33)

hViR ¼ 2E þ R
dE

dR
; (34)

such that for large R we obtain:

E ¼ EN � C6

R6
þ O

�
R�8� (35)
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hTiR ¼ hTiN � 5C6

R6
þ O

�
R�8�; (36)

hViR ¼ hViN þ 4C6

R6
þ O

�
R�8�: (37)

Since C6 is positive, we see immediately that the FDM wavefunction violates the
virial theorem, because the virial theorem implies a decrease in the kinetic energy
of the electrons coupled with an increase in the total potential energy. To compare
the situation to the standard approach via Rayleigh–Schrödinger Perturbation
Theory we performed calculations for the hydrogen dimer using the FDM wave-
function and Hylleraas Variational Perturbation Theory (VPT) including only the
rst-order correction to the wavefunction. The contributions to the different
components of the energy at order R�6 were computed and are listed in Table 1.
As is clear from the table, both Hylleraas VPT and the FDM wavefunction violate
the virial theorem when carried out to second-order, but produce the correct C6 to
numerical precision. Furthermore, in both cases and in the exact case the ratio
between the zeroth-order Hamiltonian and the perturbation Vint is +1 : �2. To
also obtain the correct ratio in VPT from the virial theorem inside each monomer,
higher order contributions to the wavefunction need to be included, while in FDM
this will not happen at any order by construction.

Dispersion between two systems in their ground states is a competition
between distortion of the fragments’ ground-states (which raises the energy with
respect to EA0 + E

B
0) and interfragment interaction. As proven by Lieb and Thirring,1

the increase in energy due to the distortion of the fragments’ ground-states can be
always made quadratic with respect to a set of variational parameters, with the
interfragment interaction being linear. In the FDM approach, we force the
quadratic increase in energy of the isolated fragments to be of kinetic energy
origin only. In the case of two H atoms this still leads to the exact overall increase
in the energy of the monomers, as shown in Table 1.
4 Pure density functional and functional
derivative

For the given dispersals bA/Bi (r) (whose optimal choice will be discussed in the next
sections), if we want to transform the FDMmodel into a “pure” density functional
method, we need to include a functional for the exchange–correlation hole of the
Table 1 Components of the C6 energy for the hydrogen dimer. The intrafragment terms
Vext and T are the sum of the contributions from both the identical fragments, while Vint is
the contribution from the interfragment interaction

Component (C6) Exact FDM Hylleraas VPT

Vint �2 �2 �2
Vext +6 0 z1.304
V ¼ Vint + Vext +4 �2 z�0.696
T �5 +1 z�0.304
H0 ¼ T + Vext +1 +1 +1
Total �1 �1 �1
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Table 2 C6 energies obtained for the helium dimer using the electron density from the
wavefunction of Freund et al.16 and different exchange(–correlation) holes corresponding
to the same density

Accurate22 Physical KS SCE23

C6 (a.u.) 1.460978 1.458440 1.70615 0.478433
% of accurate 99.8% 116.8% 32.7%
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monomers. One immediate approximation that comes to mind is the Kohn–Sham
(KS) exchange hole of the monomers instead of the full exchange–correlation
hole, a choice that recalls the XDM idea of Becke and Johnson.8 In Table 2 we have
used the KS, exact and Strictly-Correlated Electrons (SCE) exchange–correlation
holes to compute the CFDM

6 coefficient for the He–He case. We see that the KS
exchange hole alone overestimates C6. The same trend was observed in ref. 13; for
both atoms and molecules, CFDM

6 with monomer Hartree–Fock holes and densi-
ties are typically overestimated (errors around 50%), and even more so when
using exchange holes with KS orbitals from semilocal functionals. This suggests
that some alternative approximation for the exchange–correlation hole, possibly
directly targeting the xc-hole projected dispersals, must be used. The SCE xc-hole
heavily underestimates the C6 coefficients (leading to a too high dispersion
energy). An interpolation between KS and SCE could be also considered in future
work, also using the MP2 information as in ref. 24.

We should also remark that we need an approximate xc hole that satises not
only the sum rule of eqn (19a), but also that of eqn (19b). While all the available
approximations satisfy eqn (19a), the second sum rule, eqn (19b), is violated by all
the available semilocal xc-hole functionals, including the Becke–Roussel one,25 as
discussed in ref. 14. We should probably rather build simplied weighted-density-
approximation (WDA) xc holes targeting accurate xc-hole projected dispersals.

If we have a reasonable xc-hole density functional and we want to include the
effect of dispersion in a self-consistent manner, we would need the functional
derivative of EFDMdisp [r

A,rB], which can be obtained from eqn (27). This is straight-
forward but lengthy, since the bi(r), which diagonalize both s and S, change when
the density changes. Therefore, we only report the result and include the full
derivation in the ESI:†

dEFDM
disp ½rA; rB�
drAðrÞ ¼ 2

X
pqr



�
srp
AðrÞ þ sBq

�

Srp
AðrÞ

� wpqwrq

sAp þ sBq

�

sAr þ sBq

�� 4
X
pq

�
wrp

AðrÞwpq

sAp þ sBq
;

(38)

where _sArp(r), _S
A
rp(r) and _wA

pq(r) are the functional derivatives of the corresponding
matrices in the “atomic” dispersal basis and transformed to the basis in which s
and S are diagonal. Their explicit expressions can be found in the ESI.†
5 Choice of the dispersals

The choice of the dispersals bA/Bi (r) for eqn (32) was suggested by the physics of
dispersion interactions and by the immediate availability of matrix elements, but
it is by no means optimal. In particular, it was observed in ref. 11 and 13 that with
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 224, 145–165 | 155
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this choice, convergence with the number of bA/Bi (r) functions varies a lot among
systems. In some cases it can be quite fast, but in a few difficult cases (e.g., CS2–
CS2), satisfactory convergence could not really be reached.13 In this section we
discuss different strategies to optimise the choice of the dispersals. Before doing
so, we discuss which functions are admissible.
5.1 Dispersal space

Dispersals form a vector space with a weighted inner product,�
bi; bj


r
¼
ð
drrðrÞbiðrÞbjðrÞ ¼

�
bj; bi


r
: (39)

It is clear from eqn (24) that we must have

sij ¼ hVbi,Vbjip < N, (40a)

Sij ¼ hbi,(1 + hxc)bjip ¼ h(1 + hxc)bi,bjip < N, (40b)

S $ 0 (40c)

The overlap S is somewhat unusual due to the presence of the exchange–
correlation hole hxc. Indeed, while it is guaranteed that hbi|biir > 0, in general
hbirhxcbiir # 0. However, the Garrod and Percus inequality26–28 rewritten for the
exchange–correlation hole,ð

dr1dr2f ðr1Þf ðr2Þrðr1Þhxcðr1; r2Þ$ �
ð
drf ðrÞ2rðrÞ cf ðrÞ; (41)

directly implies Sii$ 0 by replacing f(r) by bi(r). Then, via Cauchy–Schwarz, we nd

sij
2 # siisjj, (42)

Sij
2 # SiiSjj, (43)

which means that boundedness of the diagonal elements Sii and sii implies
boundedness of the off-diagonal elements. Therefore, we can dene our space of
dispersals as

Bðr; hxcÞ ¼ fbi |0\Sii\N; sii\Ng: (44)

Note that the restriction Sii > 0 only rules out functions that are constant
everywhere. The dispersals, very much unlike orbitals, do not decay to zero as r
/ N for a nite system. All that seems to be necessary for valid dispersals is
that limr/Nr(r)bi(r)

2 and limr/Nr(r)|Vbi(r)|
2 go to zero fast enough for the

integrals to be nite. Since coulombic densities decay exponentially and,
therefore, have all nite moments, all non-constant polynomials are valid
dispersals. However, at this moment it is still unclear what a “complete set” of
dispersals consists of.

Finally, a comment on the niteness of the remaining matrix elements wij
(n) is

in order. Since wij
(n) is a nite sum of terms proportional to hxaybzc,(1 + hxc)

bAi irAhxdyezf,(1 + hxc)b
B
j irB, we also immediately obtain the result that |wij

(n)| < N, if
bi˛BðrA; hAxcÞ and bj˛BðrB; hBxcÞ, and rA and rB decay exponentially or more
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quickly. This is not a restriction since we are dealing with coulombic systems,
where the density always decays exponentially.
5.2 Strategies to choose the best dispersals

As mentioned, our previous calculations11,13 used the simple dispersals of eqn
(32), but to get a faster convergence we would like to use a more specialised set of
“atomic” dispersals, which can then be used as a basis set for molecular calcu-
lations. This is allowed, since if we perform an orthogonal transformation of the

dispersals, bA=Ba ðrÞ ¼
X
i

OA=B
ia

~b
A=B
i ðrÞ, then the energy expression remains the same

but with transformed coefficients, cab ¼
X
ij

OA
iaO

B
jb~cij. In the following we will

discuss several approaches: diagonalisation of s, optimisation of a limited set of
dispersals, and “natural” atomic dispersals.

5.2.1 Diagonalising s. Since we are keen on using dispersals that diagonalize
s with S as a metric, one option might be to attempt to nd the corresponding
dispersals in real space, where t̂ has the form

bs ¼ �V2 � VrðrÞ
rðrÞ $V; (45)

while Ŝ is a non-local operator:

ŜbðrÞ ¼ bðrÞ þ
ð
dr0hxc

�
r; r0
�
bðrÞ: (46)

In general we cannot nd the analytic solution to this problem, due to the
presence of hxc. However, it is useful to examine the hydrogen atom case to obtain
insight into this strategy (and rule it out, as we will see). In this case we can solve
for bi exactly and obtain the result that bi(r) are related to the hydrogenic orbitals
fni,li,mi

:

biðrÞ ¼
fni ;li ;mi

ðrÞ
f0ðrÞ

; (47)

with eigenvalues si ¼ niðni þ 2Þ
ðni þ 1Þ2 . This demonstrates directly that using the

eigenstates of s as a basis is not a viable route, since in this case it becomes
equivalent to performing Rayleigh–Schrödinger perturbation theory with the
hydrogenic orbitals, for which the convergence is notoriously slow and without
the continuum one only obtainsz60.2% of C6. In fact, in general for ground state
one-electron systems we nd that the dispersals diagonalising s are related to the
excited orbitals and we obtain a correspondence with second-order Rayleigh–
Schrödinger perturbation theory, thus showing that the theory gives exactly the
second-order dispersion energy for two one-electron systems.

5.2.2 Optimising the dispersals. An alternative approach to nd optimal
dispersals is to limit the dispersals to a small number Ndisp and then optimize the
dispersion energy w.r.t. the dispersals expressed in a larger basis. To this end, one
minimizes the energy of eqn (23), while enforcing the normalisation of the
dispersals with a Lagrange multiplier lA/B. The complete Lagrangian to optimize
is then
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 224, 145–165 | 157
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L
��

OA
ia;O

B
ia; cab; l

A
ac; l

B
bd

	� ¼XNdisp

ab

cab
X
ij

OA
iaO

B
jbwij

þ 1

8

XNdisp

acb

cabccb
X
ik

OA
iaO

A
kcs

A
ik

þ 1

8

XNdisp

abd

cabcad
X
jl

OB
jbO

B
lds

B
jl

�
XNdisp

ac

lAac

 X
ik

OA
iaO

A
kcS

A
ik � dac

!

�
XNdisp

bd

lBbd

 X
jl

OB
jbO

B
ldS

B
jl � dbd

!
:

(48)

Note that the rst term is linear in the expansion coefficients OA/B of the
dispersals of both systems, which makes the optimization w.r.t. O different than
in a Self-Consistent Field (SCF) procedure for Hartree–Fock or Kohn–Sham.
Furthermore, when using more than one dispersal the coefficients c need to be
optimized like in a Multi-Conguration SCF (MCSCF) procedure.

The optimisation can be carried out and the nal dispersals can be tted, but
the procedure by itself yields little insight into properties such as asymptotic
behaviour. To gain a better understanding we again analyze the simple case of the
interaction between two hydrogen atoms. In the case of two equal systems and
only a single dispersal the Lagrangian of eqn (48) becomes

LðfOi; cgÞ ¼ c
X
ij

OiOjwij þ c2

4

X
ij

OiOjsij � l

 X
ij

OiOjSij � 1

!
: (49)

Optimising the Lagrangian w.r.t. c yields

c ¼ �2

X
ij

OiOjwijX
ij

OiOjsij
¼: �2

hwi
hsi ; (50)

Edisp

�
rA; rB

� ¼ �hwi2
hsi ; (51)

which transforms the Lagrangian to:

LðfOigÞ ¼ �

 X
ij

OiOjwij

!2

X
ij

OiOjsij
� l

 X
ij

OiOjSij � 1

!
: (52)

Now we optimise w.r.t. Oi:
158 | Faraday Discuss., 2020, 224, 145–165 This journal is © The Royal Society of Chemistry 2020

https://doi.org/10.1039/d0fd00056f


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 0

9 
Ju

ne
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
va

n 
A

m
st

er
da

m
 o

n 
12

/2
2/

20
20

 9
:1

0:
05

 A
M

. 
View Article Online
vL
�fOig

�
vOi

¼ �2
hwi
hsi
X
j

wijOj þ hwi2
hsi2

X
j

sijOj � l
X
j

SijOj: (53)

We now solve the resulting equation for a given hwi and hsi from the previous
iteration. That is, we solve the generalised eigenvalue problem

�2 hwi
ðn�1Þ

hsiðn�1Þ wO
ðnÞ þ hwiðn�1Þ2

hsiðn�1Þ2 sO
ðnÞ ¼ SOðnÞlðnÞ; (54)

for the eigenvalues l(n) and eigenvectors O(n). Then we select the lowest (most
negative) eigenvalue of l(n), since at convergence we obtain (by le-multiplying
eqn (54) by Oi and summing)

lðnÞ ¼ �hwi2
hsi ¼ Edisp

�
rA; rB

�
; (55)

which we want to minimise. This completes the specication of the iterative
problem.

We have performed the iterative procedure for the hydrogen 1s state with
a basis consisting of rn, for n ¼ 1 to n ¼ 50. In this case we recover, with a single
radial dispersal, 99.97% of the C6 coefficient. In Fig. 1 we plot the iterative
solution, as well as the rst and second “excited states” of eqn (54). The rst and
second excited states are much more diffuse, in fact corresponding to positive
eigenvalues l, and do not seem to be useful in a dispersal basis.

To obtain the asymptotic behaviour of b(r) we will switch again to the spatial
representation, which we have already obtained for Ŝ and t̂ in eqn (46) and (45),
respectively. From the functional derivative of ŵ we again obtain a non-local operator,

ŵbðrÞ ¼
ð
dr0r

�
r0
�
b
�
r0
�
w
�
r; r0
�
: (56)

Now we move on to the specic case of the hydrogen atom, where rðrÞ ¼ e�2r

p
.

We have used three b-functions, because of the spherical symmetry, but all with

the same radial part b(r). We write:

bl,m(r) ¼ b(r)Yl
m(q,f). (57)
Fig. 1 Lowest three eigenfunctions of eqn (54) upon convergence of the iterative
procedure. To be able to visualise all three solutions, we plot the square of the dispersal
multiplied by the volume element and the density.
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Our J function in this context is:

Jðr1; r2Þ ¼
X1
m¼�1

cmbðr1Þbðr2ÞY1
mðq1;f1ÞY1

�mðq2;f2Þ: (58)

We now specialise to the dipole–dipole interaction. We have found that the
coefficient in them¼ 0 direction is twice that of the coefficient in them¼�1 and
m ¼ 1 directions. We thus work with a single direction (m ¼ �1 or m ¼ 1) and in
the end multiply l by 6 to get the C6 (see the ESI for our previous work11). The
interaction wint

(3)(r1,r2) is given in spherical coordinates as:

wint
ð3Þðr1; r2Þ ¼ � r1r2

3

�
2Y 0

1 ðq1;f1ÞY 0
1 ðq2;f2Þ þ Y1

1ðq1;f1ÞY1
�1ðq2;f2Þ

þ Y�1
1 ðq1;f1ÞY1

1ðq2;f2Þ
�
: (59)

Letting ŵ act on b�1(r2) ¼ Y1
�1(q2,f2)b(r2), we obtain

ŵb�1ðr1Þ ¼ �r1Y1
�1ðq1;f1Þ

1

3

ð
dr2r2

3bðr2Þrðr2Þ: (60)

Multiplying with r(r1)r1
2b(r1)Y1

1(q,f) and integrating, we obtain hwi,

hwi ¼ �1

3

�ð
dr r3bðrÞrðrÞ

�2

: (61)

So as an expression for the action of ŵ on b�1(r), we obtain

ŵb�1ðr1Þ ¼ �r1Y1
�1ðq1;f1Þ

ffiffiffiffiffiffiffiffiffiffi
�hwi
3

r
: (62)

The spherical expression for s acting on b�1(r) is, dividing by Y1
�1,

bsb�1ðr1Þ
Y1

�1ðq;fÞ ¼ �v2bðrÞ
vr2

� 2

r

vbðrÞ
vr

� 1

rðrÞ
vrðrÞ
vr

vbðrÞ
vr

þ 2

r2
bðrÞ; (63)

while the spatial expression for Ŝ is simply the identity. Putting everything
together in the non-linear equation,

�2 hwi
ðn�1Þ

hsiðn�1Þ ŵb�1
ðnÞðrÞ þ hwiðn�1Þ2

hsiðn�1Þ2bsb�1ðnÞðrÞ ¼ lðnÞb�1
ðnÞðrÞ; (64)

and dividing out the spherical harmonic, we get the spherical differential equation:

�2hwi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|hwi|

lðl þ 1Þ

s
hsi rþ hwi2

hsi2
�
� v2bðrÞ

vr2
� 2

r

vbðrÞ
vr

� 1

rðrÞ
vrðrÞ
vr

vbðrÞ
vr

þ lðl þ 1Þ
r2

bðrÞ
�

¼ lbðrÞ ¼ �hwi2
hsi bðrÞ:

(65)
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In the case of the hydrogen atom,
1

rðrÞ
vrðrÞ
vr

¼ �2,
�2|hwi|3=2ffiffiffi

3
p hsi rþ hwi2

hsi2
�
� v2bðr�

vr2
� 2

r

vbðrÞ
vr

þ 2
vbðrÞ
vr

þ 2

r2
bðrÞ

�
;

¼ lbðrÞ ¼ �hwi2
hsi bðrÞ:

(66)

The solution of this inhomogeneous partial differential equation (PDE) is not
trivial. However, to analyse the asymptotic behaviour at large r, we look at the
leading r / N terms and solve the simpler problem,

�2|hwi|3=2ffiffiffi
3

p hsi rþ hwi2
hsi2

�
� v2bðr�

vr2
þ 2

vbðrÞ
vr

�
¼ lbðrÞ ¼ �hwi2

hsi bðrÞ; (67)

nding that the asymptotic solution for r / N is

bðrÞ � 2rffiffiffiffiffiffiffiffiffiffi
3hwip � 4ffiffiffiffiffiffiffiffiffiffi

3hwip hsi þ c1 e
r

�
1�

ffiffiffiffiffiffiffiffi
1þhsi

p �
þ c2 e

r

�
1þ

ffiffiffiffiffiffiffiffi
1þhsi

p �
: (68)

To ensure that the dispersal is normalisable, we need c2 ¼ 0. c1 is then xed by
normalisation. We verify the asymptotic behaviour in Fig. 2.

5.2.3 Natural dispersals. The optimisation procedure as described is quite
cumbersome and can be replaced by instead using natural dispersals bnat, which
are obtained by performing a Singular Value Decomposition (SVD) of J(r1,r2) into
singular values ni and le- and right-singular functions bA/Bnat,i,

Jðr1; r2Þ ¼
X
i

nib
A
nat;iðr1ÞbBnat;iðr2Þ; (69)

and, in the case of systems A and B being the same, one instead uses eigenvalue
decomposition. In a basis the problem becomes that of the decomposition of the
coefficient matrix cij, which is trivial to solve. For both A and B hydrogen 1s states,
we show the rst three natural dispersals bi(r) with highest natural dispersal
occupation numbers ni in Fig. 3. Interestingly, the most strongly occupied natural
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Fig. 2 Iterative solution of eqn (54) upon convergence of the iterative procedure
compared to the analytical asymptotic behavior of eqn (68). For the asymptotic expres-
sion, from normalisation we obtain c1 z 3.756.
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dispersal quite closely corresponds to the iterative solution and is also by itself
enough to retrieve 99.97% of the C6 coefficient, while using the rst two natural
dispersals is enough for 99.999916% of C6. That is, the natural dispersals provide
a highly efficient way to expand J(r1,r2). The natural dispersals also have an
increasing number of nodes with decreasing occupation, analogous to natural
orbitals. Finally, they all increase linearly at large r, as can be seen in Fig. 3.

We show the natural dispersals for the He–He case in Fig. 4. The calculation
was performed as in ref. 11, with monomials ri for i ¼ 0, ., 18. Curiously, when
compared to the natural dispersals for the hydrogen–hydrogen case of Fig. 3, we
see that they look very similar. At larger r the natural dispersals for helium start to
show irregular behaviour, which is a result of the density for the helium atoms not
being exact and using only a limited set of moments.

5.2.4 Gaussian one-electron densities (Drude model). A special case occurs if
both rA(r) and rB(r) are spherical Gaussians each containing one electron, which
coincides with the (isotropic) harmonic/Drude oscillator. In this case we nd that
the exact solution for the dipole–dipole term is given by

Jðr1; r2Þ ¼ �Ĥ int;3 ¼ �x1x2 � y1y2 þ 2z1z2; (70)

for two spherical Gaussians aligned along the z-axis. The anisotropic case can be
found by scaling the different components.

Thus, for the spherically symmetric case with two equal Gaussians, rA(r) ¼
rB(r) ¼ (p/u)3/2 e�ur2, with the radial b(r) dened as in eqn (57), one obtains
Fig. 3 Comparison between the iterative solution of eqn (64) and the first three eigen-
functions of eqn (69) for two hydrogen atoms. The iterative solution is shifted up by 0.001
in the upper plot and 10 in the lower plot to make it distinguishable from the first natural
dispersals. The corresponding natural dispersal occupation numbers ni are n1 z 1.110, n2

z 0.0140 and n3 z 0.000566.
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Fig. 4 The first three eigenfunctions of eqn (69) for two helium atoms. Computed from
the wavefunction of Freund et al.16 The corresponding natural dispersal occupation
numbers ni are n1 z 0.6741, n2 z 0.0148 and n3 z 0.000782.
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bðrÞ ¼
ffiffiffiffiffiffi
2u

3

r
r; hwi ¼ 1

2u
; hsi ¼ 2u; (71)

yielding C6 ¼ 6
hwi2
hsi ¼ 3

4u3, which is the exact result for the Drude model.29 The

solution bðrÞ ¼
ffiffiffiffiffiffi
2u
3

r
r is exactly the iterative one obtained from eqn (54) and it is

also the only occupied natural dispersal.
6 Conclusions and perspectives

The idea to use amicroscopic mechanism based on a simple competition between
kinetic energy and fragment–fragment interaction provides an expression for the
dispersion energy in terms of the monomer isolated densities and xc-holes,
opening a new route to build density functional approximations. Behind these
expressions there is the explicit construction of a supramolecular wavefunction
constrained to leave the diagonal of the many-body density matrices of the two
fragments unchanged (“xed diagonal matrices” – FDM), dened in a similar way
to Levy’s constrained search12 for the DFT universal functional.

For closed-shell many-electron atoms andmolecules, the FDM has been shown
to provide accurate and robust C6 coefficients (including anisotropies) when
using CCSD xc-holes,13 showing that the reduced FDM variational freedom does
not particularly hamper the accuracy of the dispersion energy expressions, which
can be then used as a basis to build new density functional approximations.
This journal is © The Royal Society of Chemistry 2020 Faraday Discuss., 2020, 224, 145–165 | 163
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The interaction energy expression in its present form is exact up to and
including O ðR�10Þ for any two spherical one-electron densities rA(r) and rB(r),
regardless whether they are of the same species or not. As such, it could also be
used in other frameworks, for example the one proposed by Silvestrelli,30,31 where
the interacting fragments are maximally localized Wannier functions (MLWF)
instead of atoms. The FDM interaction energy should provide more accurate and
well dened expressions for the dispersion interaction energy between two
MLWFs or other kinds of localised orbitals.

There are several challenges and possible future directions: the construction of
optimal “dispersals”, which should probably go hand in hand with an approxi-
mation for the xc-hole, as accurate xc-hole projected dispersals are what is ulti-
mately needed; the analysis and denition of atomic dispersion energy, by using
atomic optimal dispersals as a basis; and nally, a self-consistent implementa-
tion, which can be made possible if good xc-hole density functionals for this
framework are found.
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